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10 Chapter 1. Introduction

point of the RHD codes for stellar atmospheres lies in the coupling between hydro-
dynamic equations and radiative transfer with realistic opacities and adapted equa-
tions of state. A detailed and precise solution of the radiative transfer is essential
for a realistic treatment of convection because it is the radiative losses in the surface
layers of the star that drain the convective movements and thus influence the whole
simulation domain.

Figure 1.3: Setup of box-in-a-star (left) and star-in-a-box (right) configurations for 3D RHD simula-
tions.

The RHD codes I use are:

• The CO5BOLD code (Freytag et al. 2012) for the RHD simulations in the star-
in-a-box configuration (i.e., global simulations).

• The STAGGER code (Nordlund et Galsgaard 19951, Nordlund et al. 2009;
Collet et al. 2011) for the RHD simulations in the box-in-a-star configuration
(i.e., local simulations).

CO5BOLD code The CO5BOLD code solves the coupled non-linear equations of compressible hy-
drodynamics (with an approximate Roe solver, ) and non-local radiative energy trans-
fer (for global simulations with a short-characteristics scheme) in the presence of a
fixed external gravitational field and in a 3D cartesian grid. The equation of state uses
pre-tabulated values as functions of density and internal energy (⇢, ei ! P,�1,T, s).
It accounts for HI, HII, H2, HeI, HeII, HeIII and a representative metal for any pre-
scribed chemical composition. The equation of state does not account for the ioniza-
tion states of metals, but it uses only one neutral element to achieve the appropriate

1http://www.astro.ku.dk/⇠kg/Papers/MHD code.ps.gz
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of 0.5 above that8. We decided to apply the same parameters Te↵
and log g for all metallicities, in order to facilitate the interpo-
lation of (averaged) models within a regular grid in stellar pa-
rameters. In addition, the grid also includes the Sun with its
non-solar metallicity analogs, and four additional standard stars,
namely HD 84937, HD 140283, HD 122563 and G 64-12 that are
presented in Bergemann et al. (2012). For metal-poor chemical
compositions with [Fe/H] � �1.0 we applied an ↵-enhancement
of [↵/Fe] = +0.4 dex, in order to account for the enrichment by
core-collapse supernovae (Ruchti et al. 2010).

In Fig. 1, we present an overview of our simulations in
stellar parameter space. Therein, we also show evolutionary
tracks (Weiss & Schlattl 2008) for stars with masses from 0.7
to 1.5 M� and solar metallicity, in order to justify our choice of
targeted stellar parameters. Hence, the grid covers the evolution-
ary phases from the main-sequence (MS) over the turno↵ (TO)
up to the red-giant branch (RGB) for low-mass stars. In addi-
tion, the RGB part of the diagram in practice also covers stars
with higher masses, since these are characterized by similar stel-
lar atmospheric parameters.

2.3. Scaling and relaxing 3D models

Generating large numbers of 1D atmosphere models is relatively
cheap in terms of computational costs, but the same is not true
for 3D models. Based on our experiences from previous simu-
lations of individual stars, we designed a standard work-flow of
procedures for generating our grid. More specifically, we devel-
oped a large set of IDL-tools incorporating the various neces-
sary steps for generating new 3D models, which we then applied
equally to all simulations. The steps are:

– Scale the starting model from an existing, relaxed 3D sim-
ulation, and perform an initial run with six opacity bins, so
that the model can adjust to the new stellar parameters.

– Check the temporal variation of Te↵ and estimate the number
of convective cells. If necessary, adjust the horizontal sizes,
in order to ensure that the simulation box is large enough to
enclose at least ten granules.

– If the optical surface has shifted upwards during the re-
laxation, add new layers at the top of it to ensure that�
log ⌧Ross

�
top < �6.0.

– Determine the period �0 of the radial p-mode with the
largest amplitude, then damp these modes with an artificial
exponential-friction term with period �0 in the momentum
equation (Eq. (2)).

– Let the natural oscillation mode of the simulation emerge
again by decreasing the damping stepwise before switching
it o↵ completely.

– Re-compute the opacity tables with 12 bins for the relaxed
simulation.

– Evolve the simulations for at least ⇠7 periods of the fun-
damental p-mode, roughly corresponding to ⇠2 convec-
tive turnover times, typically, a few thousand time-steps, of
which 100–150 snapshots equally spaced were stored and
used for analysis.

During these steps the main quantities of interest are the time
evolution of e↵ective temperature, p-mode oscillations, and
drifts in the values of the mean energy per unit mass and of the
mean density at the bottom boundary, which indicate the level

8 We use the bracket notation [X/H] = log (NX/NH)? � log (NX/NH)�
as a measure of the relative stellar to solar abundance of element X with
respect to hydrogen.

Fig. 1. Kiel diagram (Te↵� log g diagram) showing the targeted
S������-grid parameters for the 217 models, comprising seven dif-
ferent metallicities (colored circles). Four additional standard stars (see
text) are also indicated (squares). In the background, the evolutionary
tracks for stellar masses from 0.7 to 1.5 M� and for solar metallicity are
shown (thin grey lines).

of relaxation. When the drifts in these above properties stop, we
regard the simulation as relaxed. If these conditions were not
fulfilled, we continued running the model, to give the simulation
more time to properly adjust towards its new quasi-stationary
equilibrium state. Also, when the resulting e↵ective temperature
of an otherwise relaxed simulation deviated more than 100 K
from the targeted Te↵, we re-scaled the simulation to the targeted
value of Te↵ and started over from the top of our list of relaxation
steps.

The interplay between EOS, opacities, radiative transfer and
convection can shift the new location of the photosphere, when
the initial guess made by our scaling procedure slightly misses
it. This is the case for a few red giant models leading to upwards-
shifts of the optical surface and of the entire upper atmosphere
during the adjustment phase after the scaling, with the average
Rosseland optical depth ending up to be larger than required, i.e.�
log ⌧Ross

�
top � �6.0. In order to rectify this, we extended those

simulations at the top by adding extra layers on the top, until the
top layers fulfilled our requirements of

�
log ⌧Ross

�
top < �6.0.

2.3.1. Scaling the initial models

To start a new simulation, we scale an existing one with parame-
ters close to the targeted ones, preferably proceeding along lines
of constant entropy of the inflowing gas at the bottom in stellar
parameter space (see Fig. 6). In this way, we find that the relax-
ation process is much faster. In order to generate an initial model
for a set of targeted parameters, we scale temperature, density,
and pressure with depth-dependent scaling ratios derived from
two 1D models, with parameters corresponding to the current
and intended 3D model (Ludwig et al. 2009a). For this, we used
specifically computed 1D envelope models (MARCS or our own
1D models, see Sect. 3.3.1), which extend to log ⌧Ross > 4.0. The
reference depth-scale for all models in the scaling process is the
Rosseland optical depth above the photosphere and gas pressure
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In deep layers, with continuum optical depth �1 > 300
for all points in the plane, we have added the radiative
flux and its associated heating, as calculated in the dif-
fusion approximation.

2.3.1. Radiative contributions to the EOS

The EOS tables already include the radiative contri-
butions in the di�usion approximation, in particular for
energy, �deep

rad = aT 4/�, and pressure, pdeep
rad = a

3T 4. The
radiation density constant is a = 8�5k4/(15c3h3). We
use the 1D, monochromatic calibration to evaluate the
proper expressions in the atmosphere

�rad =
4�

c

J

�
= �deep

rad

J

B
, (10)

and

prad =
4�

c
K = pdeep

rad

K

B
. (11)

where K is the second angular moment of the specific
intensity. We therefore add pdeep

rad (K
B � 1) to the pressure

of the EOS table and equivalently to the internal energy.
The J/B- and K/B-ratios are extrapolated from the 1D
average to the rest of the table, as described above.

2.4. Relaxing the Simulations

A simulation for a new choice of (Te� , log g)-parameters
is started from a previous simulation with similar param-
eters. The physical dimensions of the simulation box is
scaled by the ratio of gravitational accelerations and the
average entropy structure is changed to result in a new
Te� based on all the previous simulations of the grid. The
behavior of the entropy in the asymptotically deep inte-
rior, with atmospheric parameters, is shown in Fig. 1.
This asymptotic entropy is also what we feed into the
simulations through the upflows at the bottom bound-
ary, as confirmed from exponential fits to the horizon-
tally averaged upflow entropy. The boundary a�ects the
entropy by prematurely pulling it up to the asymptotic
value, over the bottom 4–5 grid-points (0.3–0.5 pressure
scale-heights). This boundary e�ect on entropy is small,
though—only 0.4–1.5% of the atmospheric entropy jump.

If we adjust only log g (with the associated scaling of
the size of the box), but keep the entropy unchanged, the
new simulation will end up along the adiabat of the orig-
inal simulation and at the new log g. From Fig. 1 we see
that those adiabats are diagonals in the plot. Many of
the simulations lie along such adiabats, as this is the sim-
plest and fastest way of starting a new simulation. The
scaling of the box, should conceivably be accompanied
by some scaling of the velocities. It turns out, however,
that a factor of 102 change in g results in only a factor of
1.5 change in vertical velocities (1.3 for horizontal veloc-
ities). Keeping the fluxes consistent through the change,
by not changing the velocities, seemed a better approach.
These simulations will slump or expand, necessitating a
new optimization of the vertical scale and extent.

If Te� needs to be adjusted away from the starting sim-
ulations adiabat, more complicated adjustments must be
invoked. First we shift the average entropy to the new
Smax and linearly stretch the average entropy stratifica-
tion from the bottom to the atmospheric entropy mini-
mum, to match the entropy jump. The expected jump

Figure 1. The asymptotic entropy (arbitrary zero-point, see be-
low Eq. [2]), Smax/[108 erg g�1K�1], of the deep convection zone
as function of stellar atmospheric parameters. The Te� -scale is
logarithmic. The entropy is indicated with colors as shown on the
color bar, and the location of the simulations are shown with black
asterisks, except for the solar simulation which is indicated with a
�. For this figure only, we also added the simulation number from
table 2. We have over-plotted tracks of stellar evolution computed
with the MESA-code (Paxton et al. 2011), for masses as indicated
along each track. The dashed part shows the pre-main-sequence
contraction, and � and initial helium abundance, Y0, were deter-
mined from a calibration to the present Sun.

and Smax are found from inter-/extra-polations in Figs. 1
and 4 between the previous simulations. We assume the
simulations to be homologous on a gas pressure scale,
psc = pgas/pgas(peak in pturb), normalized at the loca-
tion of the maximal pturb/ptot-ratio. The whole simula-
tion cube is therefore adjusted adiabatically by the same
pressure factor, and then adjusted iso-barically to the
new entropy stratification. Our method does not rely
on linearity of the EOS, but solves numerically for en-
tropy along pressure contours. In both cases the changes,
� ln � and ��, are found from the average stratification
only, but applied to the whole cube.

With these new pressures and densities, we scale the
vertical velocities, uz,to result in the projected peak
pturb/ptot-ratio. We then adjust the amplitude of the
internal energy fluctuations (keeping all the carefully ad-
justed averages unchanged) in order to reproduce the
target convective flux. We find a hydrostatic z-scale by
inverting the equation of hydrostatic equilibrium

dP

dz
= g� � z =

� Ptot(z)

Ptot, bot

dPtot

g�
, (12)

and integrating from the bottom and up. This z-scale
will be rugged and not optimal for resolving the hydro-
and thermo-dynamics. The last step is therefore to com-
pute an optimized z-scale and interpolate the simulation
cubes to this. This procedure results in simulations that
are rather close to their (quasi-static) equilibrium state,

B. Beeck et al.: 3D simulations of stellar surface layers

Fig. 1. Stellar parameters of the six models along with three
isochrones by Bressan et al. (2012), solid line: zero-agemain se-
quence (ZAMS), dashed line: age of 1 Ga, dotted line: age of 4.5
Ga (approximate solar age) on the log g-logTe↵ plane.

run and yielded no significantly di↵erent results. The code uses
periodic side boundary conditions.

2.2. Stellar parameters

For the near-surface layers and atmosphere of a cool star, the
governing parameters are the gravitational acceleration, g, the
e↵ective temperature, Te↵ , and the chemical composition. We
use solar abundances in all cases. The e↵ective temperature and
the gravitational acceleration were chosen to match the condi-
tions in cool main-sequence stars. We have carried out simula-
tions corresponding to the following spectral types: F3V, G2V,
K0V, K5V, M0V, and M2V (stellar parameters given in table 1).
Figure 1 shows the location of the six models in the log g-logTe↵
plane along with three isochrones marking the position of the
main sequence (Bressan et al., 2012).

While gravitational acceleration and chemical composition
explicitely enter the simulations as parameters, the e↵ective tem-
perature is indirectly specified through the bottom boundary con-
dition of the code, see Sect. 2.1. For the analysis presented here,
the simulations have been run long enough with fixed inflow-
ing entropy density for any transients to dissappear, however Te↵
varies slightly due to oscillations and granulation. The standard
deviation of the temporal fluctuations of Te↵ is given in table 1.

2.3. Simulation setup

The dimensions of the computational domain (“local box”) were
adapted according to the stellar parameters: the height of the box
was chosen to contain about 13 to 15 pressure scale heights (at
least six below and six above the optical surface). The vertical
cell size (height resolution �z) was set su�ciently small to re-
solve steep temperature gradients and to maintain �z < Hp/5
at every depth, where Hp is the local pressure scale height. For
most of the models, 300 or less cells in the vertical direction
were su�cient to meet these criteria. Only the F3V model with
strongly varying pressure scale height and a very steep local
temperature gradient, required 800 cells in the vertical direc-
tion. The two equal horizontal box dimensions were scaled to
the expected granule (convection cell) size. In order to reduce
the e↵ects of the periodic boundary conditions and obtain good
statistics while maintaining su�cient spatial grid resolution, the
boxes were chosen big enough to contain 30 to 50 granules at

any given time. The horizontal dimensions were resolved into
512 ⇥ 512 grid cells. The largest computational domain of the
simulations thus comprised 512 ⇥ 512 ⇥ 800 ⇡ 2.1 · 108 cells.
Table 2 gives a summary of the computational box dimensions
and grid resolutions.

3. Results
3.1. General morphology of near-surface convection

Figure 2 gives maps of the bolometric intensity emerging ver-
tically from the simulated stellar surfaces for single snapshots
of the time-dependent simulations. All simulations show inten-
sity patterns reminiscent of solar granulation. The typical size
of the granules varies from ⇠5Mm for F3V to ⇠0.3Mm for
M2V. The rms bolometric intensity contrast (denoted by �I in
Table 1) decreases from about 20% for F3V to less than 3% in
the M2V simulation, reflecting decreasing temperature fluctua-
tions on surfaces of constant optical depth (see Sect. 3.3).

There are qualitative changes in the visual appearance of
the surface convection along the sequence of simulated stars.
For instance, the granulation pattern of the F3V model appears
“rough” and irregular owing to numerous shock waves at the
optical surface. Shocks are rarer and weaker in the near-surface
layers of the cooler stars since the typical convective velocities
are lower (also in relation to the sound speed; cf. Fig. 6). At the
cool end of our model sequence, the M-dwarf granules, which
are sustained by the slowest convective flows, have more irregu-
lar shapes but less brightness substructure than their counterparts
on the simulated G- and K-type stars. As we report quantitatively
in Paper II, their dark intergranular lanes are thinner (with re-
spect to the granule size) and vary more strongly in intensity and
width than those of the other stars (see also Ludwig et al., 2002).

Ludwig et al. (2006) found “dark knots” associated with
strong downflows and vortex motion in simulations of convec-
tion in M-type main- and pre-main-sequence objects. Our sim-
ulations show knots of high vorticity associated with strong
downflows in all models (some examples in Fig. 2 are: G2V,
(x, y) = (8.7Mm, 4.4Mm); K5V, (x, y) = (0.36Mm, 0.52Mm);
M0V, (x, y) = (0.45Mm, 0.6Mm)). They become increasingly
stable and prominent at lower e↵ective temperatures. In our
models, some of these vortices are evacuated strongly enough
by the e↵ect of the centrifugal force to become brighter than
their surroundings (cf. vortices in solar simulations studied by
Moll et al., 2011, 2012). Most frequently these bright vortex
structures occur in our two K-type simulations.
A more detailed analysis of the granulation properties and their
e↵ects on spectral lines is given in Beeck et al. (2013, Paper II,
hereafter).

3.2. Velocity field

As the visible granulation pattern is created by convective flows,
it is strongly correlated to the vertical velocities at the opti-
cal surface, �z(z = 0). Figure 3 shows �z(z = 0) for four of the
six simulations. The snapshots are taken at the same time as in
Figure 2. The colour scale of the images saturate at 2 �z,rms(z0)
with z0 := hzi⌧R=1, values of which are given in Table 1. The
granules visible in Figure 2 correspond to upflows, while the
dark intergranular lanes correspond to downdrafts. In the G-,
K-, andM-type simulations, an anti-correlation between size and
mean upflow velocity of the granules is indicated: while most of
the small convection cells appear (almost) saturated in Figure 3,
meaning their velocity reaches 2 �z,rms(z0), the larger granules

3

Figure 2.1: 3D RHD simulation-grid in the H-R diagram. Top panels: simulations computed
with Stagger-code or similar branches (Section 1.3), Stagger-grid (left, Magic et al. 2013b) and
”Trampedach” grid (right, Trampedach et al. 2013). Central panels: the CIFIST grid (left, (Lud-
wig et al. 2009) computed with CO5BOLD code, and the grid (right, Beeck et al. 2013) computed
with MURaM core (Vögler et al. 2005). Bottom panels: the White Dwarf grid (left, Tremblay et al.
2013b) and the AGB one (right, Freytag et al. 2017) computed with CO5BOLD code (Section 1.3).

dius or any other stellar parameters cannot be directly retrieved from this approach

Magic et al. 2013, A&A - Stagger code 
or similar branches
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of 0.5 above that8. We decided to apply the same parameters Te↵
and log g for all metallicities, in order to facilitate the interpo-
lation of (averaged) models within a regular grid in stellar pa-
rameters. In addition, the grid also includes the Sun with its
non-solar metallicity analogs, and four additional standard stars,
namely HD 84937, HD 140283, HD 122563 and G 64-12 that are
presented in Bergemann et al. (2012). For metal-poor chemical
compositions with [Fe/H] � �1.0 we applied an ↵-enhancement
of [↵/Fe] = +0.4 dex, in order to account for the enrichment by
core-collapse supernovae (Ruchti et al. 2010).

In Fig. 1, we present an overview of our simulations in
stellar parameter space. Therein, we also show evolutionary
tracks (Weiss & Schlattl 2008) for stars with masses from 0.7
to 1.5 M� and solar metallicity, in order to justify our choice of
targeted stellar parameters. Hence, the grid covers the evolution-
ary phases from the main-sequence (MS) over the turno↵ (TO)
up to the red-giant branch (RGB) for low-mass stars. In addi-
tion, the RGB part of the diagram in practice also covers stars
with higher masses, since these are characterized by similar stel-
lar atmospheric parameters.

2.3. Scaling and relaxing 3D models

Generating large numbers of 1D atmosphere models is relatively
cheap in terms of computational costs, but the same is not true
for 3D models. Based on our experiences from previous simu-
lations of individual stars, we designed a standard work-flow of
procedures for generating our grid. More specifically, we devel-
oped a large set of IDL-tools incorporating the various neces-
sary steps for generating new 3D models, which we then applied
equally to all simulations. The steps are:

– Scale the starting model from an existing, relaxed 3D sim-
ulation, and perform an initial run with six opacity bins, so
that the model can adjust to the new stellar parameters.

– Check the temporal variation of Te↵ and estimate the number
of convective cells. If necessary, adjust the horizontal sizes,
in order to ensure that the simulation box is large enough to
enclose at least ten granules.

– If the optical surface has shifted upwards during the re-
laxation, add new layers at the top of it to ensure that�
log ⌧Ross

�
top < �6.0.

– Determine the period �0 of the radial p-mode with the
largest amplitude, then damp these modes with an artificial
exponential-friction term with period �0 in the momentum
equation (Eq. (2)).

– Let the natural oscillation mode of the simulation emerge
again by decreasing the damping stepwise before switching
it o↵ completely.

– Re-compute the opacity tables with 12 bins for the relaxed
simulation.

– Evolve the simulations for at least ⇠7 periods of the fun-
damental p-mode, roughly corresponding to ⇠2 convec-
tive turnover times, typically, a few thousand time-steps, of
which 100–150 snapshots equally spaced were stored and
used for analysis.

During these steps the main quantities of interest are the time
evolution of e↵ective temperature, p-mode oscillations, and
drifts in the values of the mean energy per unit mass and of the
mean density at the bottom boundary, which indicate the level

8 We use the bracket notation [X/H] = log (NX/NH)? � log (NX/NH)�
as a measure of the relative stellar to solar abundance of element X with
respect to hydrogen.

Fig. 1. Kiel diagram (Te↵� log g diagram) showing the targeted
S������-grid parameters for the 217 models, comprising seven dif-
ferent metallicities (colored circles). Four additional standard stars (see
text) are also indicated (squares). In the background, the evolutionary
tracks for stellar masses from 0.7 to 1.5 M� and for solar metallicity are
shown (thin grey lines).

of relaxation. When the drifts in these above properties stop, we
regard the simulation as relaxed. If these conditions were not
fulfilled, we continued running the model, to give the simulation
more time to properly adjust towards its new quasi-stationary
equilibrium state. Also, when the resulting e↵ective temperature
of an otherwise relaxed simulation deviated more than 100 K
from the targeted Te↵, we re-scaled the simulation to the targeted
value of Te↵ and started over from the top of our list of relaxation
steps.

The interplay between EOS, opacities, radiative transfer and
convection can shift the new location of the photosphere, when
the initial guess made by our scaling procedure slightly misses
it. This is the case for a few red giant models leading to upwards-
shifts of the optical surface and of the entire upper atmosphere
during the adjustment phase after the scaling, with the average
Rosseland optical depth ending up to be larger than required, i.e.�
log ⌧Ross

�
top � �6.0. In order to rectify this, we extended those

simulations at the top by adding extra layers on the top, until the
top layers fulfilled our requirements of

�
log ⌧Ross

�
top < �6.0.

2.3.1. Scaling the initial models

To start a new simulation, we scale an existing one with parame-
ters close to the targeted ones, preferably proceeding along lines
of constant entropy of the inflowing gas at the bottom in stellar
parameter space (see Fig. 6). In this way, we find that the relax-
ation process is much faster. In order to generate an initial model
for a set of targeted parameters, we scale temperature, density,
and pressure with depth-dependent scaling ratios derived from
two 1D models, with parameters corresponding to the current
and intended 3D model (Ludwig et al. 2009a). For this, we used
specifically computed 1D envelope models (MARCS or our own
1D models, see Sect. 3.3.1), which extend to log ⌧Ross > 4.0. The
reference depth-scale for all models in the scaling process is the
Rosseland optical depth above the photosphere and gas pressure
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In deep layers, with continuum optical depth �1 > 300
for all points in the plane, we have added the radiative
flux and its associated heating, as calculated in the dif-
fusion approximation.

2.3.1. Radiative contributions to the EOS

The EOS tables already include the radiative contri-
butions in the di�usion approximation, in particular for
energy, �deep

rad = aT 4/�, and pressure, pdeep
rad = a

3T 4. The
radiation density constant is a = 8�5k4/(15c3h3). We
use the 1D, monochromatic calibration to evaluate the
proper expressions in the atmosphere

�rad =
4�

c

J

�
= �deep

rad

J

B
, (10)

and

prad =
4�

c
K = pdeep

rad

K

B
. (11)

where K is the second angular moment of the specific
intensity. We therefore add pdeep

rad (K
B � 1) to the pressure

of the EOS table and equivalently to the internal energy.
The J/B- and K/B-ratios are extrapolated from the 1D
average to the rest of the table, as described above.

2.4. Relaxing the Simulations

A simulation for a new choice of (Te� , log g)-parameters
is started from a previous simulation with similar param-
eters. The physical dimensions of the simulation box is
scaled by the ratio of gravitational accelerations and the
average entropy structure is changed to result in a new
Te� based on all the previous simulations of the grid. The
behavior of the entropy in the asymptotically deep inte-
rior, with atmospheric parameters, is shown in Fig. 1.
This asymptotic entropy is also what we feed into the
simulations through the upflows at the bottom bound-
ary, as confirmed from exponential fits to the horizon-
tally averaged upflow entropy. The boundary a�ects the
entropy by prematurely pulling it up to the asymptotic
value, over the bottom 4–5 grid-points (0.3–0.5 pressure
scale-heights). This boundary e�ect on entropy is small,
though—only 0.4–1.5% of the atmospheric entropy jump.

If we adjust only log g (with the associated scaling of
the size of the box), but keep the entropy unchanged, the
new simulation will end up along the adiabat of the orig-
inal simulation and at the new log g. From Fig. 1 we see
that those adiabats are diagonals in the plot. Many of
the simulations lie along such adiabats, as this is the sim-
plest and fastest way of starting a new simulation. The
scaling of the box, should conceivably be accompanied
by some scaling of the velocities. It turns out, however,
that a factor of 102 change in g results in only a factor of
1.5 change in vertical velocities (1.3 for horizontal veloc-
ities). Keeping the fluxes consistent through the change,
by not changing the velocities, seemed a better approach.
These simulations will slump or expand, necessitating a
new optimization of the vertical scale and extent.

If Te� needs to be adjusted away from the starting sim-
ulations adiabat, more complicated adjustments must be
invoked. First we shift the average entropy to the new
Smax and linearly stretch the average entropy stratifica-
tion from the bottom to the atmospheric entropy mini-
mum, to match the entropy jump. The expected jump

Figure 1. The asymptotic entropy (arbitrary zero-point, see be-
low Eq. [2]), Smax/[108 erg g�1K�1], of the deep convection zone
as function of stellar atmospheric parameters. The Te� -scale is
logarithmic. The entropy is indicated with colors as shown on the
color bar, and the location of the simulations are shown with black
asterisks, except for the solar simulation which is indicated with a
�. For this figure only, we also added the simulation number from
table 2. We have over-plotted tracks of stellar evolution computed
with the MESA-code (Paxton et al. 2011), for masses as indicated
along each track. The dashed part shows the pre-main-sequence
contraction, and � and initial helium abundance, Y0, were deter-
mined from a calibration to the present Sun.

and Smax are found from inter-/extra-polations in Figs. 1
and 4 between the previous simulations. We assume the
simulations to be homologous on a gas pressure scale,
psc = pgas/pgas(peak in pturb), normalized at the loca-
tion of the maximal pturb/ptot-ratio. The whole simula-
tion cube is therefore adjusted adiabatically by the same
pressure factor, and then adjusted iso-barically to the
new entropy stratification. Our method does not rely
on linearity of the EOS, but solves numerically for en-
tropy along pressure contours. In both cases the changes,
� ln � and ��, are found from the average stratification
only, but applied to the whole cube.

With these new pressures and densities, we scale the
vertical velocities, uz,to result in the projected peak
pturb/ptot-ratio. We then adjust the amplitude of the
internal energy fluctuations (keeping all the carefully ad-
justed averages unchanged) in order to reproduce the
target convective flux. We find a hydrostatic z-scale by
inverting the equation of hydrostatic equilibrium

dP

dz
= g� � z =

� Ptot(z)

Ptot, bot

dPtot

g�
, (12)

and integrating from the bottom and up. This z-scale
will be rugged and not optimal for resolving the hydro-
and thermo-dynamics. The last step is therefore to com-
pute an optimized z-scale and interpolate the simulation
cubes to this. This procedure results in simulations that
are rather close to their (quasi-static) equilibrium state,
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Fig. 1. Stellar parameters of the six models along with three
isochrones by Bressan et al. (2012), solid line: zero-agemain se-
quence (ZAMS), dashed line: age of 1 Ga, dotted line: age of 4.5
Ga (approximate solar age) on the log g-logTe↵ plane.

run and yielded no significantly di↵erent results. The code uses
periodic side boundary conditions.

2.2. Stellar parameters

For the near-surface layers and atmosphere of a cool star, the
governing parameters are the gravitational acceleration, g, the
e↵ective temperature, Te↵ , and the chemical composition. We
use solar abundances in all cases. The e↵ective temperature and
the gravitational acceleration were chosen to match the condi-
tions in cool main-sequence stars. We have carried out simula-
tions corresponding to the following spectral types: F3V, G2V,
K0V, K5V, M0V, and M2V (stellar parameters given in table 1).
Figure 1 shows the location of the six models in the log g-logTe↵
plane along with three isochrones marking the position of the
main sequence (Bressan et al., 2012).

While gravitational acceleration and chemical composition
explicitely enter the simulations as parameters, the e↵ective tem-
perature is indirectly specified through the bottom boundary con-
dition of the code, see Sect. 2.1. For the analysis presented here,
the simulations have been run long enough with fixed inflow-
ing entropy density for any transients to dissappear, however Te↵
varies slightly due to oscillations and granulation. The standard
deviation of the temporal fluctuations of Te↵ is given in table 1.

2.3. Simulation setup

The dimensions of the computational domain (“local box”) were
adapted according to the stellar parameters: the height of the box
was chosen to contain about 13 to 15 pressure scale heights (at
least six below and six above the optical surface). The vertical
cell size (height resolution �z) was set su�ciently small to re-
solve steep temperature gradients and to maintain �z < Hp/5
at every depth, where Hp is the local pressure scale height. For
most of the models, 300 or less cells in the vertical direction
were su�cient to meet these criteria. Only the F3V model with
strongly varying pressure scale height and a very steep local
temperature gradient, required 800 cells in the vertical direc-
tion. The two equal horizontal box dimensions were scaled to
the expected granule (convection cell) size. In order to reduce
the e↵ects of the periodic boundary conditions and obtain good
statistics while maintaining su�cient spatial grid resolution, the
boxes were chosen big enough to contain 30 to 50 granules at

any given time. The horizontal dimensions were resolved into
512 ⇥ 512 grid cells. The largest computational domain of the
simulations thus comprised 512 ⇥ 512 ⇥ 800 ⇡ 2.1 · 108 cells.
Table 2 gives a summary of the computational box dimensions
and grid resolutions.

3. Results
3.1. General morphology of near-surface convection

Figure 2 gives maps of the bolometric intensity emerging ver-
tically from the simulated stellar surfaces for single snapshots
of the time-dependent simulations. All simulations show inten-
sity patterns reminiscent of solar granulation. The typical size
of the granules varies from ⇠5Mm for F3V to ⇠0.3Mm for
M2V. The rms bolometric intensity contrast (denoted by �I in
Table 1) decreases from about 20% for F3V to less than 3% in
the M2V simulation, reflecting decreasing temperature fluctua-
tions on surfaces of constant optical depth (see Sect. 3.3).

There are qualitative changes in the visual appearance of
the surface convection along the sequence of simulated stars.
For instance, the granulation pattern of the F3V model appears
“rough” and irregular owing to numerous shock waves at the
optical surface. Shocks are rarer and weaker in the near-surface
layers of the cooler stars since the typical convective velocities
are lower (also in relation to the sound speed; cf. Fig. 6). At the
cool end of our model sequence, the M-dwarf granules, which
are sustained by the slowest convective flows, have more irregu-
lar shapes but less brightness substructure than their counterparts
on the simulated G- and K-type stars. As we report quantitatively
in Paper II, their dark intergranular lanes are thinner (with re-
spect to the granule size) and vary more strongly in intensity and
width than those of the other stars (see also Ludwig et al., 2002).

Ludwig et al. (2006) found “dark knots” associated with
strong downflows and vortex motion in simulations of convec-
tion in M-type main- and pre-main-sequence objects. Our sim-
ulations show knots of high vorticity associated with strong
downflows in all models (some examples in Fig. 2 are: G2V,
(x, y) = (8.7Mm, 4.4Mm); K5V, (x, y) = (0.36Mm, 0.52Mm);
M0V, (x, y) = (0.45Mm, 0.6Mm)). They become increasingly
stable and prominent at lower e↵ective temperatures. In our
models, some of these vortices are evacuated strongly enough
by the e↵ect of the centrifugal force to become brighter than
their surroundings (cf. vortices in solar simulations studied by
Moll et al., 2011, 2012). Most frequently these bright vortex
structures occur in our two K-type simulations.
A more detailed analysis of the granulation properties and their
e↵ects on spectral lines is given in Beeck et al. (2013, Paper II,
hereafter).

3.2. Velocity field

As the visible granulation pattern is created by convective flows,
it is strongly correlated to the vertical velocities at the opti-
cal surface, �z(z = 0). Figure 3 shows �z(z = 0) for four of the
six simulations. The snapshots are taken at the same time as in
Figure 2. The colour scale of the images saturate at 2 �z,rms(z0)
with z0 := hzi⌧R=1, values of which are given in Table 1. The
granules visible in Figure 2 correspond to upflows, while the
dark intergranular lanes correspond to downdrafts. In the G-,
K-, andM-type simulations, an anti-correlation between size and
mean upflow velocity of the granules is indicated: while most of
the small convection cells appear (almost) saturated in Figure 3,
meaning their velocity reaches 2 �z,rms(z0), the larger granules
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Figure 2.1: 3D RHD simulation-grid in the H-R diagram. Top panels: simulations computed
with Stagger-code or similar branches (Section 1.3), Stagger-grid (left, Magic et al. 2013b) and
”Trampedach” grid (right, Trampedach et al. 2013). Central panels: the CIFIST grid (left, (Lud-
wig et al. 2009) computed with CO5BOLD code, and the grid (right, Beeck et al. 2013) computed
with MURaM core (Vögler et al. 2005). Bottom panels: the White Dwarf grid (left, Tremblay et al.
2013b) and the AGB one (right, Freytag et al. 2017) computed with CO5BOLD code (Section 1.3).

dius or any other stellar parameters cannot be directly retrieved from this approach

Trampedach et al. 2013, ApJ - Stagger 
code or similar branches
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of 0.5 above that8. We decided to apply the same parameters Te↵
and log g for all metallicities, in order to facilitate the interpo-
lation of (averaged) models within a regular grid in stellar pa-
rameters. In addition, the grid also includes the Sun with its
non-solar metallicity analogs, and four additional standard stars,
namely HD 84937, HD 140283, HD 122563 and G 64-12 that are
presented in Bergemann et al. (2012). For metal-poor chemical
compositions with [Fe/H] � �1.0 we applied an ↵-enhancement
of [↵/Fe] = +0.4 dex, in order to account for the enrichment by
core-collapse supernovae (Ruchti et al. 2010).

In Fig. 1, we present an overview of our simulations in
stellar parameter space. Therein, we also show evolutionary
tracks (Weiss & Schlattl 2008) for stars with masses from 0.7
to 1.5 M� and solar metallicity, in order to justify our choice of
targeted stellar parameters. Hence, the grid covers the evolution-
ary phases from the main-sequence (MS) over the turno↵ (TO)
up to the red-giant branch (RGB) for low-mass stars. In addi-
tion, the RGB part of the diagram in practice also covers stars
with higher masses, since these are characterized by similar stel-
lar atmospheric parameters.

2.3. Scaling and relaxing 3D models

Generating large numbers of 1D atmosphere models is relatively
cheap in terms of computational costs, but the same is not true
for 3D models. Based on our experiences from previous simu-
lations of individual stars, we designed a standard work-flow of
procedures for generating our grid. More specifically, we devel-
oped a large set of IDL-tools incorporating the various neces-
sary steps for generating new 3D models, which we then applied
equally to all simulations. The steps are:

– Scale the starting model from an existing, relaxed 3D sim-
ulation, and perform an initial run with six opacity bins, so
that the model can adjust to the new stellar parameters.

– Check the temporal variation of Te↵ and estimate the number
of convective cells. If necessary, adjust the horizontal sizes,
in order to ensure that the simulation box is large enough to
enclose at least ten granules.

– If the optical surface has shifted upwards during the re-
laxation, add new layers at the top of it to ensure that�
log ⌧Ross

�
top < �6.0.

– Determine the period �0 of the radial p-mode with the
largest amplitude, then damp these modes with an artificial
exponential-friction term with period �0 in the momentum
equation (Eq. (2)).

– Let the natural oscillation mode of the simulation emerge
again by decreasing the damping stepwise before switching
it o↵ completely.

– Re-compute the opacity tables with 12 bins for the relaxed
simulation.

– Evolve the simulations for at least ⇠7 periods of the fun-
damental p-mode, roughly corresponding to ⇠2 convec-
tive turnover times, typically, a few thousand time-steps, of
which 100–150 snapshots equally spaced were stored and
used for analysis.

During these steps the main quantities of interest are the time
evolution of e↵ective temperature, p-mode oscillations, and
drifts in the values of the mean energy per unit mass and of the
mean density at the bottom boundary, which indicate the level

8 We use the bracket notation [X/H] = log (NX/NH)? � log (NX/NH)�
as a measure of the relative stellar to solar abundance of element X with
respect to hydrogen.

Fig. 1. Kiel diagram (Te↵� log g diagram) showing the targeted
S������-grid parameters for the 217 models, comprising seven dif-
ferent metallicities (colored circles). Four additional standard stars (see
text) are also indicated (squares). In the background, the evolutionary
tracks for stellar masses from 0.7 to 1.5 M� and for solar metallicity are
shown (thin grey lines).

of relaxation. When the drifts in these above properties stop, we
regard the simulation as relaxed. If these conditions were not
fulfilled, we continued running the model, to give the simulation
more time to properly adjust towards its new quasi-stationary
equilibrium state. Also, when the resulting e↵ective temperature
of an otherwise relaxed simulation deviated more than 100 K
from the targeted Te↵, we re-scaled the simulation to the targeted
value of Te↵ and started over from the top of our list of relaxation
steps.

The interplay between EOS, opacities, radiative transfer and
convection can shift the new location of the photosphere, when
the initial guess made by our scaling procedure slightly misses
it. This is the case for a few red giant models leading to upwards-
shifts of the optical surface and of the entire upper atmosphere
during the adjustment phase after the scaling, with the average
Rosseland optical depth ending up to be larger than required, i.e.�
log ⌧Ross

�
top � �6.0. In order to rectify this, we extended those

simulations at the top by adding extra layers on the top, until the
top layers fulfilled our requirements of

�
log ⌧Ross

�
top < �6.0.

2.3.1. Scaling the initial models

To start a new simulation, we scale an existing one with parame-
ters close to the targeted ones, preferably proceeding along lines
of constant entropy of the inflowing gas at the bottom in stellar
parameter space (see Fig. 6). In this way, we find that the relax-
ation process is much faster. In order to generate an initial model
for a set of targeted parameters, we scale temperature, density,
and pressure with depth-dependent scaling ratios derived from
two 1D models, with parameters corresponding to the current
and intended 3D model (Ludwig et al. 2009a). For this, we used
specifically computed 1D envelope models (MARCS or our own
1D models, see Sect. 3.3.1), which extend to log ⌧Ross > 4.0. The
reference depth-scale for all models in the scaling process is the
Rosseland optical depth above the photosphere and gas pressure
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In deep layers, with continuum optical depth �1 > 300
for all points in the plane, we have added the radiative
flux and its associated heating, as calculated in the dif-
fusion approximation.

2.3.1. Radiative contributions to the EOS

The EOS tables already include the radiative contri-
butions in the di�usion approximation, in particular for
energy, �deep

rad = aT 4/�, and pressure, pdeep
rad = a

3T 4. The
radiation density constant is a = 8�5k4/(15c3h3). We
use the 1D, monochromatic calibration to evaluate the
proper expressions in the atmosphere

�rad =
4�

c

J

�
= �deep

rad

J

B
, (10)

and

prad =
4�

c
K = pdeep

rad

K

B
. (11)

where K is the second angular moment of the specific
intensity. We therefore add pdeep

rad (K
B � 1) to the pressure

of the EOS table and equivalently to the internal energy.
The J/B- and K/B-ratios are extrapolated from the 1D
average to the rest of the table, as described above.

2.4. Relaxing the Simulations

A simulation for a new choice of (Te� , log g)-parameters
is started from a previous simulation with similar param-
eters. The physical dimensions of the simulation box is
scaled by the ratio of gravitational accelerations and the
average entropy structure is changed to result in a new
Te� based on all the previous simulations of the grid. The
behavior of the entropy in the asymptotically deep inte-
rior, with atmospheric parameters, is shown in Fig. 1.
This asymptotic entropy is also what we feed into the
simulations through the upflows at the bottom bound-
ary, as confirmed from exponential fits to the horizon-
tally averaged upflow entropy. The boundary a�ects the
entropy by prematurely pulling it up to the asymptotic
value, over the bottom 4–5 grid-points (0.3–0.5 pressure
scale-heights). This boundary e�ect on entropy is small,
though—only 0.4–1.5% of the atmospheric entropy jump.

If we adjust only log g (with the associated scaling of
the size of the box), but keep the entropy unchanged, the
new simulation will end up along the adiabat of the orig-
inal simulation and at the new log g. From Fig. 1 we see
that those adiabats are diagonals in the plot. Many of
the simulations lie along such adiabats, as this is the sim-
plest and fastest way of starting a new simulation. The
scaling of the box, should conceivably be accompanied
by some scaling of the velocities. It turns out, however,
that a factor of 102 change in g results in only a factor of
1.5 change in vertical velocities (1.3 for horizontal veloc-
ities). Keeping the fluxes consistent through the change,
by not changing the velocities, seemed a better approach.
These simulations will slump or expand, necessitating a
new optimization of the vertical scale and extent.

If Te� needs to be adjusted away from the starting sim-
ulations adiabat, more complicated adjustments must be
invoked. First we shift the average entropy to the new
Smax and linearly stretch the average entropy stratifica-
tion from the bottom to the atmospheric entropy mini-
mum, to match the entropy jump. The expected jump

Figure 1. The asymptotic entropy (arbitrary zero-point, see be-
low Eq. [2]), Smax/[108 erg g�1K�1], of the deep convection zone
as function of stellar atmospheric parameters. The Te� -scale is
logarithmic. The entropy is indicated with colors as shown on the
color bar, and the location of the simulations are shown with black
asterisks, except for the solar simulation which is indicated with a
�. For this figure only, we also added the simulation number from
table 2. We have over-plotted tracks of stellar evolution computed
with the MESA-code (Paxton et al. 2011), for masses as indicated
along each track. The dashed part shows the pre-main-sequence
contraction, and � and initial helium abundance, Y0, were deter-
mined from a calibration to the present Sun.

and Smax are found from inter-/extra-polations in Figs. 1
and 4 between the previous simulations. We assume the
simulations to be homologous on a gas pressure scale,
psc = pgas/pgas(peak in pturb), normalized at the loca-
tion of the maximal pturb/ptot-ratio. The whole simula-
tion cube is therefore adjusted adiabatically by the same
pressure factor, and then adjusted iso-barically to the
new entropy stratification. Our method does not rely
on linearity of the EOS, but solves numerically for en-
tropy along pressure contours. In both cases the changes,
� ln � and ��, are found from the average stratification
only, but applied to the whole cube.

With these new pressures and densities, we scale the
vertical velocities, uz,to result in the projected peak
pturb/ptot-ratio. We then adjust the amplitude of the
internal energy fluctuations (keeping all the carefully ad-
justed averages unchanged) in order to reproduce the
target convective flux. We find a hydrostatic z-scale by
inverting the equation of hydrostatic equilibrium

dP

dz
= g� � z =

� Ptot(z)

Ptot, bot

dPtot

g�
, (12)

and integrating from the bottom and up. This z-scale
will be rugged and not optimal for resolving the hydro-
and thermo-dynamics. The last step is therefore to com-
pute an optimized z-scale and interpolate the simulation
cubes to this. This procedure results in simulations that
are rather close to their (quasi-static) equilibrium state,
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Fig. 1. Stellar parameters of the six models along with three
isochrones by Bressan et al. (2012), solid line: zero-agemain se-
quence (ZAMS), dashed line: age of 1 Ga, dotted line: age of 4.5
Ga (approximate solar age) on the log g-logTe↵ plane.

run and yielded no significantly di↵erent results. The code uses
periodic side boundary conditions.

2.2. Stellar parameters

For the near-surface layers and atmosphere of a cool star, the
governing parameters are the gravitational acceleration, g, the
e↵ective temperature, Te↵ , and the chemical composition. We
use solar abundances in all cases. The e↵ective temperature and
the gravitational acceleration were chosen to match the condi-
tions in cool main-sequence stars. We have carried out simula-
tions corresponding to the following spectral types: F3V, G2V,
K0V, K5V, M0V, and M2V (stellar parameters given in table 1).
Figure 1 shows the location of the six models in the log g-logTe↵
plane along with three isochrones marking the position of the
main sequence (Bressan et al., 2012).

While gravitational acceleration and chemical composition
explicitely enter the simulations as parameters, the e↵ective tem-
perature is indirectly specified through the bottom boundary con-
dition of the code, see Sect. 2.1. For the analysis presented here,
the simulations have been run long enough with fixed inflow-
ing entropy density for any transients to dissappear, however Te↵
varies slightly due to oscillations and granulation. The standard
deviation of the temporal fluctuations of Te↵ is given in table 1.

2.3. Simulation setup

The dimensions of the computational domain (“local box”) were
adapted according to the stellar parameters: the height of the box
was chosen to contain about 13 to 15 pressure scale heights (at
least six below and six above the optical surface). The vertical
cell size (height resolution �z) was set su�ciently small to re-
solve steep temperature gradients and to maintain �z < Hp/5
at every depth, where Hp is the local pressure scale height. For
most of the models, 300 or less cells in the vertical direction
were su�cient to meet these criteria. Only the F3V model with
strongly varying pressure scale height and a very steep local
temperature gradient, required 800 cells in the vertical direc-
tion. The two equal horizontal box dimensions were scaled to
the expected granule (convection cell) size. In order to reduce
the e↵ects of the periodic boundary conditions and obtain good
statistics while maintaining su�cient spatial grid resolution, the
boxes were chosen big enough to contain 30 to 50 granules at

any given time. The horizontal dimensions were resolved into
512 ⇥ 512 grid cells. The largest computational domain of the
simulations thus comprised 512 ⇥ 512 ⇥ 800 ⇡ 2.1 · 108 cells.
Table 2 gives a summary of the computational box dimensions
and grid resolutions.

3. Results
3.1. General morphology of near-surface convection

Figure 2 gives maps of the bolometric intensity emerging ver-
tically from the simulated stellar surfaces for single snapshots
of the time-dependent simulations. All simulations show inten-
sity patterns reminiscent of solar granulation. The typical size
of the granules varies from ⇠5Mm for F3V to ⇠0.3Mm for
M2V. The rms bolometric intensity contrast (denoted by �I in
Table 1) decreases from about 20% for F3V to less than 3% in
the M2V simulation, reflecting decreasing temperature fluctua-
tions on surfaces of constant optical depth (see Sect. 3.3).

There are qualitative changes in the visual appearance of
the surface convection along the sequence of simulated stars.
For instance, the granulation pattern of the F3V model appears
“rough” and irregular owing to numerous shock waves at the
optical surface. Shocks are rarer and weaker in the near-surface
layers of the cooler stars since the typical convective velocities
are lower (also in relation to the sound speed; cf. Fig. 6). At the
cool end of our model sequence, the M-dwarf granules, which
are sustained by the slowest convective flows, have more irregu-
lar shapes but less brightness substructure than their counterparts
on the simulated G- and K-type stars. As we report quantitatively
in Paper II, their dark intergranular lanes are thinner (with re-
spect to the granule size) and vary more strongly in intensity and
width than those of the other stars (see also Ludwig et al., 2002).

Ludwig et al. (2006) found “dark knots” associated with
strong downflows and vortex motion in simulations of convec-
tion in M-type main- and pre-main-sequence objects. Our sim-
ulations show knots of high vorticity associated with strong
downflows in all models (some examples in Fig. 2 are: G2V,
(x, y) = (8.7Mm, 4.4Mm); K5V, (x, y) = (0.36Mm, 0.52Mm);
M0V, (x, y) = (0.45Mm, 0.6Mm)). They become increasingly
stable and prominent at lower e↵ective temperatures. In our
models, some of these vortices are evacuated strongly enough
by the e↵ect of the centrifugal force to become brighter than
their surroundings (cf. vortices in solar simulations studied by
Moll et al., 2011, 2012). Most frequently these bright vortex
structures occur in our two K-type simulations.
A more detailed analysis of the granulation properties and their
e↵ects on spectral lines is given in Beeck et al. (2013, Paper II,
hereafter).

3.2. Velocity field

As the visible granulation pattern is created by convective flows,
it is strongly correlated to the vertical velocities at the opti-
cal surface, �z(z = 0). Figure 3 shows �z(z = 0) for four of the
six simulations. The snapshots are taken at the same time as in
Figure 2. The colour scale of the images saturate at 2 �z,rms(z0)
with z0 := hzi⌧R=1, values of which are given in Table 1. The
granules visible in Figure 2 correspond to upflows, while the
dark intergranular lanes correspond to downdrafts. In the G-,
K-, andM-type simulations, an anti-correlation between size and
mean upflow velocity of the granules is indicated: while most of
the small convection cells appear (almost) saturated in Figure 3,
meaning their velocity reaches 2 �z,rms(z0), the larger granules

3

Figure 2.1: 3D RHD simulation-grid in the H-R diagram. Top panels: simulations computed
with Stagger-code or similar branches (Section 1.3), Stagger-grid (left, Magic et al. 2013b) and
”Trampedach” grid (right, Trampedach et al. 2013). Central panels: the CIFIST grid (left, (Lud-
wig et al. 2009) computed with CO5BOLD code, and the grid (right, Beeck et al. 2013) computed
with MURaM core (Vögler et al. 2005). Bottom panels: the White Dwarf grid (left, Tremblay et al.
2013b) and the AGB one (right, Freytag et al. 2017) computed with CO5BOLD code (Section 1.3).

dius or any other stellar parameters cannot be directly retrieved from this approach
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of 0.5 above that8. We decided to apply the same parameters Te↵
and log g for all metallicities, in order to facilitate the interpo-
lation of (averaged) models within a regular grid in stellar pa-
rameters. In addition, the grid also includes the Sun with its
non-solar metallicity analogs, and four additional standard stars,
namely HD 84937, HD 140283, HD 122563 and G 64-12 that are
presented in Bergemann et al. (2012). For metal-poor chemical
compositions with [Fe/H] � �1.0 we applied an ↵-enhancement
of [↵/Fe] = +0.4 dex, in order to account for the enrichment by
core-collapse supernovae (Ruchti et al. 2010).

In Fig. 1, we present an overview of our simulations in
stellar parameter space. Therein, we also show evolutionary
tracks (Weiss & Schlattl 2008) for stars with masses from 0.7
to 1.5 M� and solar metallicity, in order to justify our choice of
targeted stellar parameters. Hence, the grid covers the evolution-
ary phases from the main-sequence (MS) over the turno↵ (TO)
up to the red-giant branch (RGB) for low-mass stars. In addi-
tion, the RGB part of the diagram in practice also covers stars
with higher masses, since these are characterized by similar stel-
lar atmospheric parameters.

2.3. Scaling and relaxing 3D models

Generating large numbers of 1D atmosphere models is relatively
cheap in terms of computational costs, but the same is not true
for 3D models. Based on our experiences from previous simu-
lations of individual stars, we designed a standard work-flow of
procedures for generating our grid. More specifically, we devel-
oped a large set of IDL-tools incorporating the various neces-
sary steps for generating new 3D models, which we then applied
equally to all simulations. The steps are:

– Scale the starting model from an existing, relaxed 3D sim-
ulation, and perform an initial run with six opacity bins, so
that the model can adjust to the new stellar parameters.

– Check the temporal variation of Te↵ and estimate the number
of convective cells. If necessary, adjust the horizontal sizes,
in order to ensure that the simulation box is large enough to
enclose at least ten granules.

– If the optical surface has shifted upwards during the re-
laxation, add new layers at the top of it to ensure that�
log ⌧Ross

�
top < �6.0.

– Determine the period �0 of the radial p-mode with the
largest amplitude, then damp these modes with an artificial
exponential-friction term with period �0 in the momentum
equation (Eq. (2)).

– Let the natural oscillation mode of the simulation emerge
again by decreasing the damping stepwise before switching
it o↵ completely.

– Re-compute the opacity tables with 12 bins for the relaxed
simulation.

– Evolve the simulations for at least ⇠7 periods of the fun-
damental p-mode, roughly corresponding to ⇠2 convec-
tive turnover times, typically, a few thousand time-steps, of
which 100–150 snapshots equally spaced were stored and
used for analysis.

During these steps the main quantities of interest are the time
evolution of e↵ective temperature, p-mode oscillations, and
drifts in the values of the mean energy per unit mass and of the
mean density at the bottom boundary, which indicate the level

8 We use the bracket notation [X/H] = log (NX/NH)? � log (NX/NH)�
as a measure of the relative stellar to solar abundance of element X with
respect to hydrogen.

Fig. 1. Kiel diagram (Te↵� log g diagram) showing the targeted
S������-grid parameters for the 217 models, comprising seven dif-
ferent metallicities (colored circles). Four additional standard stars (see
text) are also indicated (squares). In the background, the evolutionary
tracks for stellar masses from 0.7 to 1.5 M� and for solar metallicity are
shown (thin grey lines).

of relaxation. When the drifts in these above properties stop, we
regard the simulation as relaxed. If these conditions were not
fulfilled, we continued running the model, to give the simulation
more time to properly adjust towards its new quasi-stationary
equilibrium state. Also, when the resulting e↵ective temperature
of an otherwise relaxed simulation deviated more than 100 K
from the targeted Te↵, we re-scaled the simulation to the targeted
value of Te↵ and started over from the top of our list of relaxation
steps.

The interplay between EOS, opacities, radiative transfer and
convection can shift the new location of the photosphere, when
the initial guess made by our scaling procedure slightly misses
it. This is the case for a few red giant models leading to upwards-
shifts of the optical surface and of the entire upper atmosphere
during the adjustment phase after the scaling, with the average
Rosseland optical depth ending up to be larger than required, i.e.�
log ⌧Ross

�
top � �6.0. In order to rectify this, we extended those

simulations at the top by adding extra layers on the top, until the
top layers fulfilled our requirements of

�
log ⌧Ross

�
top < �6.0.

2.3.1. Scaling the initial models

To start a new simulation, we scale an existing one with parame-
ters close to the targeted ones, preferably proceeding along lines
of constant entropy of the inflowing gas at the bottom in stellar
parameter space (see Fig. 6). In this way, we find that the relax-
ation process is much faster. In order to generate an initial model
for a set of targeted parameters, we scale temperature, density,
and pressure with depth-dependent scaling ratios derived from
two 1D models, with parameters corresponding to the current
and intended 3D model (Ludwig et al. 2009a). For this, we used
specifically computed 1D envelope models (MARCS or our own
1D models, see Sect. 3.3.1), which extend to log ⌧Ross > 4.0. The
reference depth-scale for all models in the scaling process is the
Rosseland optical depth above the photosphere and gas pressure
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In deep layers, with continuum optical depth �1 > 300
for all points in the plane, we have added the radiative
flux and its associated heating, as calculated in the dif-
fusion approximation.

2.3.1. Radiative contributions to the EOS

The EOS tables already include the radiative contri-
butions in the di�usion approximation, in particular for
energy, �deep

rad = aT 4/�, and pressure, pdeep
rad = a

3T 4. The
radiation density constant is a = 8�5k4/(15c3h3). We
use the 1D, monochromatic calibration to evaluate the
proper expressions in the atmosphere

�rad =
4�

c

J

�
= �deep

rad

J

B
, (10)

and

prad =
4�

c
K = pdeep

rad

K

B
. (11)

where K is the second angular moment of the specific
intensity. We therefore add pdeep

rad (K
B � 1) to the pressure

of the EOS table and equivalently to the internal energy.
The J/B- and K/B-ratios are extrapolated from the 1D
average to the rest of the table, as described above.

2.4. Relaxing the Simulations

A simulation for a new choice of (Te� , log g)-parameters
is started from a previous simulation with similar param-
eters. The physical dimensions of the simulation box is
scaled by the ratio of gravitational accelerations and the
average entropy structure is changed to result in a new
Te� based on all the previous simulations of the grid. The
behavior of the entropy in the asymptotically deep inte-
rior, with atmospheric parameters, is shown in Fig. 1.
This asymptotic entropy is also what we feed into the
simulations through the upflows at the bottom bound-
ary, as confirmed from exponential fits to the horizon-
tally averaged upflow entropy. The boundary a�ects the
entropy by prematurely pulling it up to the asymptotic
value, over the bottom 4–5 grid-points (0.3–0.5 pressure
scale-heights). This boundary e�ect on entropy is small,
though—only 0.4–1.5% of the atmospheric entropy jump.

If we adjust only log g (with the associated scaling of
the size of the box), but keep the entropy unchanged, the
new simulation will end up along the adiabat of the orig-
inal simulation and at the new log g. From Fig. 1 we see
that those adiabats are diagonals in the plot. Many of
the simulations lie along such adiabats, as this is the sim-
plest and fastest way of starting a new simulation. The
scaling of the box, should conceivably be accompanied
by some scaling of the velocities. It turns out, however,
that a factor of 102 change in g results in only a factor of
1.5 change in vertical velocities (1.3 for horizontal veloc-
ities). Keeping the fluxes consistent through the change,
by not changing the velocities, seemed a better approach.
These simulations will slump or expand, necessitating a
new optimization of the vertical scale and extent.

If Te� needs to be adjusted away from the starting sim-
ulations adiabat, more complicated adjustments must be
invoked. First we shift the average entropy to the new
Smax and linearly stretch the average entropy stratifica-
tion from the bottom to the atmospheric entropy mini-
mum, to match the entropy jump. The expected jump

Figure 1. The asymptotic entropy (arbitrary zero-point, see be-
low Eq. [2]), Smax/[108 erg g�1K�1], of the deep convection zone
as function of stellar atmospheric parameters. The Te� -scale is
logarithmic. The entropy is indicated with colors as shown on the
color bar, and the location of the simulations are shown with black
asterisks, except for the solar simulation which is indicated with a
�. For this figure only, we also added the simulation number from
table 2. We have over-plotted tracks of stellar evolution computed
with the MESA-code (Paxton et al. 2011), for masses as indicated
along each track. The dashed part shows the pre-main-sequence
contraction, and � and initial helium abundance, Y0, were deter-
mined from a calibration to the present Sun.

and Smax are found from inter-/extra-polations in Figs. 1
and 4 between the previous simulations. We assume the
simulations to be homologous on a gas pressure scale,
psc = pgas/pgas(peak in pturb), normalized at the loca-
tion of the maximal pturb/ptot-ratio. The whole simula-
tion cube is therefore adjusted adiabatically by the same
pressure factor, and then adjusted iso-barically to the
new entropy stratification. Our method does not rely
on linearity of the EOS, but solves numerically for en-
tropy along pressure contours. In both cases the changes,
� ln � and ��, are found from the average stratification
only, but applied to the whole cube.

With these new pressures and densities, we scale the
vertical velocities, uz,to result in the projected peak
pturb/ptot-ratio. We then adjust the amplitude of the
internal energy fluctuations (keeping all the carefully ad-
justed averages unchanged) in order to reproduce the
target convective flux. We find a hydrostatic z-scale by
inverting the equation of hydrostatic equilibrium

dP

dz
= g� � z =

� Ptot(z)

Ptot, bot

dPtot

g�
, (12)

and integrating from the bottom and up. This z-scale
will be rugged and not optimal for resolving the hydro-
and thermo-dynamics. The last step is therefore to com-
pute an optimized z-scale and interpolate the simulation
cubes to this. This procedure results in simulations that
are rather close to their (quasi-static) equilibrium state,
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Fig. 1. Stellar parameters of the six models along with three
isochrones by Bressan et al. (2012), solid line: zero-agemain se-
quence (ZAMS), dashed line: age of 1 Ga, dotted line: age of 4.5
Ga (approximate solar age) on the log g-logTe↵ plane.

run and yielded no significantly di↵erent results. The code uses
periodic side boundary conditions.

2.2. Stellar parameters

For the near-surface layers and atmosphere of a cool star, the
governing parameters are the gravitational acceleration, g, the
e↵ective temperature, Te↵ , and the chemical composition. We
use solar abundances in all cases. The e↵ective temperature and
the gravitational acceleration were chosen to match the condi-
tions in cool main-sequence stars. We have carried out simula-
tions corresponding to the following spectral types: F3V, G2V,
K0V, K5V, M0V, and M2V (stellar parameters given in table 1).
Figure 1 shows the location of the six models in the log g-logTe↵
plane along with three isochrones marking the position of the
main sequence (Bressan et al., 2012).

While gravitational acceleration and chemical composition
explicitely enter the simulations as parameters, the e↵ective tem-
perature is indirectly specified through the bottom boundary con-
dition of the code, see Sect. 2.1. For the analysis presented here,
the simulations have been run long enough with fixed inflow-
ing entropy density for any transients to dissappear, however Te↵
varies slightly due to oscillations and granulation. The standard
deviation of the temporal fluctuations of Te↵ is given in table 1.

2.3. Simulation setup

The dimensions of the computational domain (“local box”) were
adapted according to the stellar parameters: the height of the box
was chosen to contain about 13 to 15 pressure scale heights (at
least six below and six above the optical surface). The vertical
cell size (height resolution �z) was set su�ciently small to re-
solve steep temperature gradients and to maintain �z < Hp/5
at every depth, where Hp is the local pressure scale height. For
most of the models, 300 or less cells in the vertical direction
were su�cient to meet these criteria. Only the F3V model with
strongly varying pressure scale height and a very steep local
temperature gradient, required 800 cells in the vertical direc-
tion. The two equal horizontal box dimensions were scaled to
the expected granule (convection cell) size. In order to reduce
the e↵ects of the periodic boundary conditions and obtain good
statistics while maintaining su�cient spatial grid resolution, the
boxes were chosen big enough to contain 30 to 50 granules at

any given time. The horizontal dimensions were resolved into
512 ⇥ 512 grid cells. The largest computational domain of the
simulations thus comprised 512 ⇥ 512 ⇥ 800 ⇡ 2.1 · 108 cells.
Table 2 gives a summary of the computational box dimensions
and grid resolutions.

3. Results
3.1. General morphology of near-surface convection

Figure 2 gives maps of the bolometric intensity emerging ver-
tically from the simulated stellar surfaces for single snapshots
of the time-dependent simulations. All simulations show inten-
sity patterns reminiscent of solar granulation. The typical size
of the granules varies from ⇠5Mm for F3V to ⇠0.3Mm for
M2V. The rms bolometric intensity contrast (denoted by �I in
Table 1) decreases from about 20% for F3V to less than 3% in
the M2V simulation, reflecting decreasing temperature fluctua-
tions on surfaces of constant optical depth (see Sect. 3.3).

There are qualitative changes in the visual appearance of
the surface convection along the sequence of simulated stars.
For instance, the granulation pattern of the F3V model appears
“rough” and irregular owing to numerous shock waves at the
optical surface. Shocks are rarer and weaker in the near-surface
layers of the cooler stars since the typical convective velocities
are lower (also in relation to the sound speed; cf. Fig. 6). At the
cool end of our model sequence, the M-dwarf granules, which
are sustained by the slowest convective flows, have more irregu-
lar shapes but less brightness substructure than their counterparts
on the simulated G- and K-type stars. As we report quantitatively
in Paper II, their dark intergranular lanes are thinner (with re-
spect to the granule size) and vary more strongly in intensity and
width than those of the other stars (see also Ludwig et al., 2002).

Ludwig et al. (2006) found “dark knots” associated with
strong downflows and vortex motion in simulations of convec-
tion in M-type main- and pre-main-sequence objects. Our sim-
ulations show knots of high vorticity associated with strong
downflows in all models (some examples in Fig. 2 are: G2V,
(x, y) = (8.7Mm, 4.4Mm); K5V, (x, y) = (0.36Mm, 0.52Mm);
M0V, (x, y) = (0.45Mm, 0.6Mm)). They become increasingly
stable and prominent at lower e↵ective temperatures. In our
models, some of these vortices are evacuated strongly enough
by the e↵ect of the centrifugal force to become brighter than
their surroundings (cf. vortices in solar simulations studied by
Moll et al., 2011, 2012). Most frequently these bright vortex
structures occur in our two K-type simulations.
A more detailed analysis of the granulation properties and their
e↵ects on spectral lines is given in Beeck et al. (2013, Paper II,
hereafter).

3.2. Velocity field

As the visible granulation pattern is created by convective flows,
it is strongly correlated to the vertical velocities at the opti-
cal surface, �z(z = 0). Figure 3 shows �z(z = 0) for four of the
six simulations. The snapshots are taken at the same time as in
Figure 2. The colour scale of the images saturate at 2 �z,rms(z0)
with z0 := hzi⌧R=1, values of which are given in Table 1. The
granules visible in Figure 2 correspond to upflows, while the
dark intergranular lanes correspond to downdrafts. In the G-,
K-, andM-type simulations, an anti-correlation between size and
mean upflow velocity of the granules is indicated: while most of
the small convection cells appear (almost) saturated in Figure 3,
meaning their velocity reaches 2 �z,rms(z0), the larger granules

3

Figure 2.1: 3D RHD simulation-grid in the H-R diagram. Top panels: simulations computed
with Stagger-code or similar branches (Section 1.3), Stagger-grid (left, Magic et al. 2013b) and
”Trampedach” grid (right, Trampedach et al. 2013). Central panels: the CIFIST grid (left, (Lud-
wig et al. 2009) computed with CO5BOLD code, and the grid (right, Beeck et al. 2013) computed
with MURaM core (Vögler et al. 2005). Bottom panels: the White Dwarf grid (left, Tremblay et al.
2013b) and the AGB one (right, Freytag et al. 2017) computed with CO5BOLD code (Section 1.3).

dius or any other stellar parameters cannot be directly retrieved from this approach

Beeck et al. 2013, A&A - MURaM
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of 0.5 above that8. We decided to apply the same parameters Te↵
and log g for all metallicities, in order to facilitate the interpo-
lation of (averaged) models within a regular grid in stellar pa-
rameters. In addition, the grid also includes the Sun with its
non-solar metallicity analogs, and four additional standard stars,
namely HD 84937, HD 140283, HD 122563 and G 64-12 that are
presented in Bergemann et al. (2012). For metal-poor chemical
compositions with [Fe/H] � �1.0 we applied an ↵-enhancement
of [↵/Fe] = +0.4 dex, in order to account for the enrichment by
core-collapse supernovae (Ruchti et al. 2010).

In Fig. 1, we present an overview of our simulations in
stellar parameter space. Therein, we also show evolutionary
tracks (Weiss & Schlattl 2008) for stars with masses from 0.7
to 1.5 M� and solar metallicity, in order to justify our choice of
targeted stellar parameters. Hence, the grid covers the evolution-
ary phases from the main-sequence (MS) over the turno↵ (TO)
up to the red-giant branch (RGB) for low-mass stars. In addi-
tion, the RGB part of the diagram in practice also covers stars
with higher masses, since these are characterized by similar stel-
lar atmospheric parameters.

2.3. Scaling and relaxing 3D models

Generating large numbers of 1D atmosphere models is relatively
cheap in terms of computational costs, but the same is not true
for 3D models. Based on our experiences from previous simu-
lations of individual stars, we designed a standard work-flow of
procedures for generating our grid. More specifically, we devel-
oped a large set of IDL-tools incorporating the various neces-
sary steps for generating new 3D models, which we then applied
equally to all simulations. The steps are:

– Scale the starting model from an existing, relaxed 3D sim-
ulation, and perform an initial run with six opacity bins, so
that the model can adjust to the new stellar parameters.

– Check the temporal variation of Te↵ and estimate the number
of convective cells. If necessary, adjust the horizontal sizes,
in order to ensure that the simulation box is large enough to
enclose at least ten granules.

– If the optical surface has shifted upwards during the re-
laxation, add new layers at the top of it to ensure that�
log ⌧Ross

�
top < �6.0.

– Determine the period �0 of the radial p-mode with the
largest amplitude, then damp these modes with an artificial
exponential-friction term with period �0 in the momentum
equation (Eq. (2)).

– Let the natural oscillation mode of the simulation emerge
again by decreasing the damping stepwise before switching
it o↵ completely.

– Re-compute the opacity tables with 12 bins for the relaxed
simulation.

– Evolve the simulations for at least ⇠7 periods of the fun-
damental p-mode, roughly corresponding to ⇠2 convec-
tive turnover times, typically, a few thousand time-steps, of
which 100–150 snapshots equally spaced were stored and
used for analysis.

During these steps the main quantities of interest are the time
evolution of e↵ective temperature, p-mode oscillations, and
drifts in the values of the mean energy per unit mass and of the
mean density at the bottom boundary, which indicate the level

8 We use the bracket notation [X/H] = log (NX/NH)? � log (NX/NH)�
as a measure of the relative stellar to solar abundance of element X with
respect to hydrogen.

Fig. 1. Kiel diagram (Te↵� log g diagram) showing the targeted
S������-grid parameters for the 217 models, comprising seven dif-
ferent metallicities (colored circles). Four additional standard stars (see
text) are also indicated (squares). In the background, the evolutionary
tracks for stellar masses from 0.7 to 1.5 M� and for solar metallicity are
shown (thin grey lines).

of relaxation. When the drifts in these above properties stop, we
regard the simulation as relaxed. If these conditions were not
fulfilled, we continued running the model, to give the simulation
more time to properly adjust towards its new quasi-stationary
equilibrium state. Also, when the resulting e↵ective temperature
of an otherwise relaxed simulation deviated more than 100 K
from the targeted Te↵, we re-scaled the simulation to the targeted
value of Te↵ and started over from the top of our list of relaxation
steps.

The interplay between EOS, opacities, radiative transfer and
convection can shift the new location of the photosphere, when
the initial guess made by our scaling procedure slightly misses
it. This is the case for a few red giant models leading to upwards-
shifts of the optical surface and of the entire upper atmosphere
during the adjustment phase after the scaling, with the average
Rosseland optical depth ending up to be larger than required, i.e.�
log ⌧Ross

�
top � �6.0. In order to rectify this, we extended those

simulations at the top by adding extra layers on the top, until the
top layers fulfilled our requirements of

�
log ⌧Ross

�
top < �6.0.

2.3.1. Scaling the initial models

To start a new simulation, we scale an existing one with parame-
ters close to the targeted ones, preferably proceeding along lines
of constant entropy of the inflowing gas at the bottom in stellar
parameter space (see Fig. 6). In this way, we find that the relax-
ation process is much faster. In order to generate an initial model
for a set of targeted parameters, we scale temperature, density,
and pressure with depth-dependent scaling ratios derived from
two 1D models, with parameters corresponding to the current
and intended 3D model (Ludwig et al. 2009a). For this, we used
specifically computed 1D envelope models (MARCS or our own
1D models, see Sect. 3.3.1), which extend to log ⌧Ross > 4.0. The
reference depth-scale for all models in the scaling process is the
Rosseland optical depth above the photosphere and gas pressure
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In deep layers, with continuum optical depth �1 > 300
for all points in the plane, we have added the radiative
flux and its associated heating, as calculated in the dif-
fusion approximation.

2.3.1. Radiative contributions to the EOS

The EOS tables already include the radiative contri-
butions in the di�usion approximation, in particular for
energy, �deep

rad = aT 4/�, and pressure, pdeep
rad = a

3T 4. The
radiation density constant is a = 8�5k4/(15c3h3). We
use the 1D, monochromatic calibration to evaluate the
proper expressions in the atmosphere

�rad =
4�

c

J

�
= �deep

rad

J

B
, (10)

and

prad =
4�

c
K = pdeep

rad

K

B
. (11)

where K is the second angular moment of the specific
intensity. We therefore add pdeep

rad (K
B � 1) to the pressure

of the EOS table and equivalently to the internal energy.
The J/B- and K/B-ratios are extrapolated from the 1D
average to the rest of the table, as described above.

2.4. Relaxing the Simulations

A simulation for a new choice of (Te� , log g)-parameters
is started from a previous simulation with similar param-
eters. The physical dimensions of the simulation box is
scaled by the ratio of gravitational accelerations and the
average entropy structure is changed to result in a new
Te� based on all the previous simulations of the grid. The
behavior of the entropy in the asymptotically deep inte-
rior, with atmospheric parameters, is shown in Fig. 1.
This asymptotic entropy is also what we feed into the
simulations through the upflows at the bottom bound-
ary, as confirmed from exponential fits to the horizon-
tally averaged upflow entropy. The boundary a�ects the
entropy by prematurely pulling it up to the asymptotic
value, over the bottom 4–5 grid-points (0.3–0.5 pressure
scale-heights). This boundary e�ect on entropy is small,
though—only 0.4–1.5% of the atmospheric entropy jump.

If we adjust only log g (with the associated scaling of
the size of the box), but keep the entropy unchanged, the
new simulation will end up along the adiabat of the orig-
inal simulation and at the new log g. From Fig. 1 we see
that those adiabats are diagonals in the plot. Many of
the simulations lie along such adiabats, as this is the sim-
plest and fastest way of starting a new simulation. The
scaling of the box, should conceivably be accompanied
by some scaling of the velocities. It turns out, however,
that a factor of 102 change in g results in only a factor of
1.5 change in vertical velocities (1.3 for horizontal veloc-
ities). Keeping the fluxes consistent through the change,
by not changing the velocities, seemed a better approach.
These simulations will slump or expand, necessitating a
new optimization of the vertical scale and extent.

If Te� needs to be adjusted away from the starting sim-
ulations adiabat, more complicated adjustments must be
invoked. First we shift the average entropy to the new
Smax and linearly stretch the average entropy stratifica-
tion from the bottom to the atmospheric entropy mini-
mum, to match the entropy jump. The expected jump

Figure 1. The asymptotic entropy (arbitrary zero-point, see be-
low Eq. [2]), Smax/[108 erg g�1K�1], of the deep convection zone
as function of stellar atmospheric parameters. The Te� -scale is
logarithmic. The entropy is indicated with colors as shown on the
color bar, and the location of the simulations are shown with black
asterisks, except for the solar simulation which is indicated with a
�. For this figure only, we also added the simulation number from
table 2. We have over-plotted tracks of stellar evolution computed
with the MESA-code (Paxton et al. 2011), for masses as indicated
along each track. The dashed part shows the pre-main-sequence
contraction, and � and initial helium abundance, Y0, were deter-
mined from a calibration to the present Sun.

and Smax are found from inter-/extra-polations in Figs. 1
and 4 between the previous simulations. We assume the
simulations to be homologous on a gas pressure scale,
psc = pgas/pgas(peak in pturb), normalized at the loca-
tion of the maximal pturb/ptot-ratio. The whole simula-
tion cube is therefore adjusted adiabatically by the same
pressure factor, and then adjusted iso-barically to the
new entropy stratification. Our method does not rely
on linearity of the EOS, but solves numerically for en-
tropy along pressure contours. In both cases the changes,
� ln � and ��, are found from the average stratification
only, but applied to the whole cube.

With these new pressures and densities, we scale the
vertical velocities, uz,to result in the projected peak
pturb/ptot-ratio. We then adjust the amplitude of the
internal energy fluctuations (keeping all the carefully ad-
justed averages unchanged) in order to reproduce the
target convective flux. We find a hydrostatic z-scale by
inverting the equation of hydrostatic equilibrium

dP

dz
= g� � z =

� Ptot(z)

Ptot, bot

dPtot

g�
, (12)

and integrating from the bottom and up. This z-scale
will be rugged and not optimal for resolving the hydro-
and thermo-dynamics. The last step is therefore to com-
pute an optimized z-scale and interpolate the simulation
cubes to this. This procedure results in simulations that
are rather close to their (quasi-static) equilibrium state,
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Fig. 1. Stellar parameters of the six models along with three
isochrones by Bressan et al. (2012), solid line: zero-agemain se-
quence (ZAMS), dashed line: age of 1 Ga, dotted line: age of 4.5
Ga (approximate solar age) on the log g-logTe↵ plane.

run and yielded no significantly di↵erent results. The code uses
periodic side boundary conditions.

2.2. Stellar parameters

For the near-surface layers and atmosphere of a cool star, the
governing parameters are the gravitational acceleration, g, the
e↵ective temperature, Te↵ , and the chemical composition. We
use solar abundances in all cases. The e↵ective temperature and
the gravitational acceleration were chosen to match the condi-
tions in cool main-sequence stars. We have carried out simula-
tions corresponding to the following spectral types: F3V, G2V,
K0V, K5V, M0V, and M2V (stellar parameters given in table 1).
Figure 1 shows the location of the six models in the log g-logTe↵
plane along with three isochrones marking the position of the
main sequence (Bressan et al., 2012).

While gravitational acceleration and chemical composition
explicitely enter the simulations as parameters, the e↵ective tem-
perature is indirectly specified through the bottom boundary con-
dition of the code, see Sect. 2.1. For the analysis presented here,
the simulations have been run long enough with fixed inflow-
ing entropy density for any transients to dissappear, however Te↵
varies slightly due to oscillations and granulation. The standard
deviation of the temporal fluctuations of Te↵ is given in table 1.

2.3. Simulation setup

The dimensions of the computational domain (“local box”) were
adapted according to the stellar parameters: the height of the box
was chosen to contain about 13 to 15 pressure scale heights (at
least six below and six above the optical surface). The vertical
cell size (height resolution �z) was set su�ciently small to re-
solve steep temperature gradients and to maintain �z < Hp/5
at every depth, where Hp is the local pressure scale height. For
most of the models, 300 or less cells in the vertical direction
were su�cient to meet these criteria. Only the F3V model with
strongly varying pressure scale height and a very steep local
temperature gradient, required 800 cells in the vertical direc-
tion. The two equal horizontal box dimensions were scaled to
the expected granule (convection cell) size. In order to reduce
the e↵ects of the periodic boundary conditions and obtain good
statistics while maintaining su�cient spatial grid resolution, the
boxes were chosen big enough to contain 30 to 50 granules at

any given time. The horizontal dimensions were resolved into
512 ⇥ 512 grid cells. The largest computational domain of the
simulations thus comprised 512 ⇥ 512 ⇥ 800 ⇡ 2.1 · 108 cells.
Table 2 gives a summary of the computational box dimensions
and grid resolutions.

3. Results
3.1. General morphology of near-surface convection

Figure 2 gives maps of the bolometric intensity emerging ver-
tically from the simulated stellar surfaces for single snapshots
of the time-dependent simulations. All simulations show inten-
sity patterns reminiscent of solar granulation. The typical size
of the granules varies from ⇠5Mm for F3V to ⇠0.3Mm for
M2V. The rms bolometric intensity contrast (denoted by �I in
Table 1) decreases from about 20% for F3V to less than 3% in
the M2V simulation, reflecting decreasing temperature fluctua-
tions on surfaces of constant optical depth (see Sect. 3.3).

There are qualitative changes in the visual appearance of
the surface convection along the sequence of simulated stars.
For instance, the granulation pattern of the F3V model appears
“rough” and irregular owing to numerous shock waves at the
optical surface. Shocks are rarer and weaker in the near-surface
layers of the cooler stars since the typical convective velocities
are lower (also in relation to the sound speed; cf. Fig. 6). At the
cool end of our model sequence, the M-dwarf granules, which
are sustained by the slowest convective flows, have more irregu-
lar shapes but less brightness substructure than their counterparts
on the simulated G- and K-type stars. As we report quantitatively
in Paper II, their dark intergranular lanes are thinner (with re-
spect to the granule size) and vary more strongly in intensity and
width than those of the other stars (see also Ludwig et al., 2002).

Ludwig et al. (2006) found “dark knots” associated with
strong downflows and vortex motion in simulations of convec-
tion in M-type main- and pre-main-sequence objects. Our sim-
ulations show knots of high vorticity associated with strong
downflows in all models (some examples in Fig. 2 are: G2V,
(x, y) = (8.7Mm, 4.4Mm); K5V, (x, y) = (0.36Mm, 0.52Mm);
M0V, (x, y) = (0.45Mm, 0.6Mm)). They become increasingly
stable and prominent at lower e↵ective temperatures. In our
models, some of these vortices are evacuated strongly enough
by the e↵ect of the centrifugal force to become brighter than
their surroundings (cf. vortices in solar simulations studied by
Moll et al., 2011, 2012). Most frequently these bright vortex
structures occur in our two K-type simulations.
A more detailed analysis of the granulation properties and their
e↵ects on spectral lines is given in Beeck et al. (2013, Paper II,
hereafter).

3.2. Velocity field

As the visible granulation pattern is created by convective flows,
it is strongly correlated to the vertical velocities at the opti-
cal surface, �z(z = 0). Figure 3 shows �z(z = 0) for four of the
six simulations. The snapshots are taken at the same time as in
Figure 2. The colour scale of the images saturate at 2 �z,rms(z0)
with z0 := hzi⌧R=1, values of which are given in Table 1. The
granules visible in Figure 2 correspond to upflows, while the
dark intergranular lanes correspond to downdrafts. In the G-,
K-, andM-type simulations, an anti-correlation between size and
mean upflow velocity of the granules is indicated: while most of
the small convection cells appear (almost) saturated in Figure 3,
meaning their velocity reaches 2 �z,rms(z0), the larger granules

3

Figure 2.1: 3D RHD simulation-grid in the H-R diagram. Top panels: simulations computed
with Stagger-code or similar branches (Section 1.3), Stagger-grid (left, Magic et al. 2013b) and
”Trampedach” grid (right, Trampedach et al. 2013). Central panels: the CIFIST grid (left, (Lud-
wig et al. 2009) computed with CO5BOLD code, and the grid (right, Beeck et al. 2013) computed
with MURaM core (Vögler et al. 2005). Bottom panels: the White Dwarf grid (left, Tremblay et al.
2013b) and the AGB one (right, Freytag et al. 2017) computed with CO5BOLD code (Section 1.3).
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of 0.5 above that8. We decided to apply the same parameters Te↵
and log g for all metallicities, in order to facilitate the interpo-
lation of (averaged) models within a regular grid in stellar pa-
rameters. In addition, the grid also includes the Sun with its
non-solar metallicity analogs, and four additional standard stars,
namely HD 84937, HD 140283, HD 122563 and G 64-12 that are
presented in Bergemann et al. (2012). For metal-poor chemical
compositions with [Fe/H] � �1.0 we applied an ↵-enhancement
of [↵/Fe] = +0.4 dex, in order to account for the enrichment by
core-collapse supernovae (Ruchti et al. 2010).

In Fig. 1, we present an overview of our simulations in
stellar parameter space. Therein, we also show evolutionary
tracks (Weiss & Schlattl 2008) for stars with masses from 0.7
to 1.5 M� and solar metallicity, in order to justify our choice of
targeted stellar parameters. Hence, the grid covers the evolution-
ary phases from the main-sequence (MS) over the turno↵ (TO)
up to the red-giant branch (RGB) for low-mass stars. In addi-
tion, the RGB part of the diagram in practice also covers stars
with higher masses, since these are characterized by similar stel-
lar atmospheric parameters.

2.3. Scaling and relaxing 3D models

Generating large numbers of 1D atmosphere models is relatively
cheap in terms of computational costs, but the same is not true
for 3D models. Based on our experiences from previous simu-
lations of individual stars, we designed a standard work-flow of
procedures for generating our grid. More specifically, we devel-
oped a large set of IDL-tools incorporating the various neces-
sary steps for generating new 3D models, which we then applied
equally to all simulations. The steps are:

– Scale the starting model from an existing, relaxed 3D sim-
ulation, and perform an initial run with six opacity bins, so
that the model can adjust to the new stellar parameters.

– Check the temporal variation of Te↵ and estimate the number
of convective cells. If necessary, adjust the horizontal sizes,
in order to ensure that the simulation box is large enough to
enclose at least ten granules.

– If the optical surface has shifted upwards during the re-
laxation, add new layers at the top of it to ensure that�
log ⌧Ross

�
top < �6.0.

– Determine the period �0 of the radial p-mode with the
largest amplitude, then damp these modes with an artificial
exponential-friction term with period �0 in the momentum
equation (Eq. (2)).

– Let the natural oscillation mode of the simulation emerge
again by decreasing the damping stepwise before switching
it o↵ completely.

– Re-compute the opacity tables with 12 bins for the relaxed
simulation.

– Evolve the simulations for at least ⇠7 periods of the fun-
damental p-mode, roughly corresponding to ⇠2 convec-
tive turnover times, typically, a few thousand time-steps, of
which 100–150 snapshots equally spaced were stored and
used for analysis.

During these steps the main quantities of interest are the time
evolution of e↵ective temperature, p-mode oscillations, and
drifts in the values of the mean energy per unit mass and of the
mean density at the bottom boundary, which indicate the level

8 We use the bracket notation [X/H] = log (NX/NH)? � log (NX/NH)�
as a measure of the relative stellar to solar abundance of element X with
respect to hydrogen.

Fig. 1. Kiel diagram (Te↵� log g diagram) showing the targeted
S������-grid parameters for the 217 models, comprising seven dif-
ferent metallicities (colored circles). Four additional standard stars (see
text) are also indicated (squares). In the background, the evolutionary
tracks for stellar masses from 0.7 to 1.5 M� and for solar metallicity are
shown (thin grey lines).

of relaxation. When the drifts in these above properties stop, we
regard the simulation as relaxed. If these conditions were not
fulfilled, we continued running the model, to give the simulation
more time to properly adjust towards its new quasi-stationary
equilibrium state. Also, when the resulting e↵ective temperature
of an otherwise relaxed simulation deviated more than 100 K
from the targeted Te↵, we re-scaled the simulation to the targeted
value of Te↵ and started over from the top of our list of relaxation
steps.

The interplay between EOS, opacities, radiative transfer and
convection can shift the new location of the photosphere, when
the initial guess made by our scaling procedure slightly misses
it. This is the case for a few red giant models leading to upwards-
shifts of the optical surface and of the entire upper atmosphere
during the adjustment phase after the scaling, with the average
Rosseland optical depth ending up to be larger than required, i.e.�
log ⌧Ross

�
top � �6.0. In order to rectify this, we extended those

simulations at the top by adding extra layers on the top, until the
top layers fulfilled our requirements of

�
log ⌧Ross

�
top < �6.0.

2.3.1. Scaling the initial models

To start a new simulation, we scale an existing one with parame-
ters close to the targeted ones, preferably proceeding along lines
of constant entropy of the inflowing gas at the bottom in stellar
parameter space (see Fig. 6). In this way, we find that the relax-
ation process is much faster. In order to generate an initial model
for a set of targeted parameters, we scale temperature, density,
and pressure with depth-dependent scaling ratios derived from
two 1D models, with parameters corresponding to the current
and intended 3D model (Ludwig et al. 2009a). For this, we used
specifically computed 1D envelope models (MARCS or our own
1D models, see Sect. 3.3.1), which extend to log ⌧Ross > 4.0. The
reference depth-scale for all models in the scaling process is the
Rosseland optical depth above the photosphere and gas pressure
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In deep layers, with continuum optical depth �1 > 300
for all points in the plane, we have added the radiative
flux and its associated heating, as calculated in the dif-
fusion approximation.

2.3.1. Radiative contributions to the EOS

The EOS tables already include the radiative contri-
butions in the di�usion approximation, in particular for
energy, �deep

rad = aT 4/�, and pressure, pdeep
rad = a

3T 4. The
radiation density constant is a = 8�5k4/(15c3h3). We
use the 1D, monochromatic calibration to evaluate the
proper expressions in the atmosphere

�rad =
4�

c

J

�
= �deep

rad

J

B
, (10)

and

prad =
4�

c
K = pdeep

rad

K

B
. (11)

where K is the second angular moment of the specific
intensity. We therefore add pdeep

rad (K
B � 1) to the pressure

of the EOS table and equivalently to the internal energy.
The J/B- and K/B-ratios are extrapolated from the 1D
average to the rest of the table, as described above.

2.4. Relaxing the Simulations

A simulation for a new choice of (Te� , log g)-parameters
is started from a previous simulation with similar param-
eters. The physical dimensions of the simulation box is
scaled by the ratio of gravitational accelerations and the
average entropy structure is changed to result in a new
Te� based on all the previous simulations of the grid. The
behavior of the entropy in the asymptotically deep inte-
rior, with atmospheric parameters, is shown in Fig. 1.
This asymptotic entropy is also what we feed into the
simulations through the upflows at the bottom bound-
ary, as confirmed from exponential fits to the horizon-
tally averaged upflow entropy. The boundary a�ects the
entropy by prematurely pulling it up to the asymptotic
value, over the bottom 4–5 grid-points (0.3–0.5 pressure
scale-heights). This boundary e�ect on entropy is small,
though—only 0.4–1.5% of the atmospheric entropy jump.

If we adjust only log g (with the associated scaling of
the size of the box), but keep the entropy unchanged, the
new simulation will end up along the adiabat of the orig-
inal simulation and at the new log g. From Fig. 1 we see
that those adiabats are diagonals in the plot. Many of
the simulations lie along such adiabats, as this is the sim-
plest and fastest way of starting a new simulation. The
scaling of the box, should conceivably be accompanied
by some scaling of the velocities. It turns out, however,
that a factor of 102 change in g results in only a factor of
1.5 change in vertical velocities (1.3 for horizontal veloc-
ities). Keeping the fluxes consistent through the change,
by not changing the velocities, seemed a better approach.
These simulations will slump or expand, necessitating a
new optimization of the vertical scale and extent.

If Te� needs to be adjusted away from the starting sim-
ulations adiabat, more complicated adjustments must be
invoked. First we shift the average entropy to the new
Smax and linearly stretch the average entropy stratifica-
tion from the bottom to the atmospheric entropy mini-
mum, to match the entropy jump. The expected jump

Figure 1. The asymptotic entropy (arbitrary zero-point, see be-
low Eq. [2]), Smax/[108 erg g�1K�1], of the deep convection zone
as function of stellar atmospheric parameters. The Te� -scale is
logarithmic. The entropy is indicated with colors as shown on the
color bar, and the location of the simulations are shown with black
asterisks, except for the solar simulation which is indicated with a
�. For this figure only, we also added the simulation number from
table 2. We have over-plotted tracks of stellar evolution computed
with the MESA-code (Paxton et al. 2011), for masses as indicated
along each track. The dashed part shows the pre-main-sequence
contraction, and � and initial helium abundance, Y0, were deter-
mined from a calibration to the present Sun.

and Smax are found from inter-/extra-polations in Figs. 1
and 4 between the previous simulations. We assume the
simulations to be homologous on a gas pressure scale,
psc = pgas/pgas(peak in pturb), normalized at the loca-
tion of the maximal pturb/ptot-ratio. The whole simula-
tion cube is therefore adjusted adiabatically by the same
pressure factor, and then adjusted iso-barically to the
new entropy stratification. Our method does not rely
on linearity of the EOS, but solves numerically for en-
tropy along pressure contours. In both cases the changes,
� ln � and ��, are found from the average stratification
only, but applied to the whole cube.

With these new pressures and densities, we scale the
vertical velocities, uz,to result in the projected peak
pturb/ptot-ratio. We then adjust the amplitude of the
internal energy fluctuations (keeping all the carefully ad-
justed averages unchanged) in order to reproduce the
target convective flux. We find a hydrostatic z-scale by
inverting the equation of hydrostatic equilibrium

dP

dz
= g� � z =

� Ptot(z)

Ptot, bot

dPtot

g�
, (12)

and integrating from the bottom and up. This z-scale
will be rugged and not optimal for resolving the hydro-
and thermo-dynamics. The last step is therefore to com-
pute an optimized z-scale and interpolate the simulation
cubes to this. This procedure results in simulations that
are rather close to their (quasi-static) equilibrium state,

B. Beeck et al.: 3D simulations of stellar surface layers

Fig. 1. Stellar parameters of the six models along with three
isochrones by Bressan et al. (2012), solid line: zero-agemain se-
quence (ZAMS), dashed line: age of 1 Ga, dotted line: age of 4.5
Ga (approximate solar age) on the log g-logTe↵ plane.

run and yielded no significantly di↵erent results. The code uses
periodic side boundary conditions.

2.2. Stellar parameters

For the near-surface layers and atmosphere of a cool star, the
governing parameters are the gravitational acceleration, g, the
e↵ective temperature, Te↵ , and the chemical composition. We
use solar abundances in all cases. The e↵ective temperature and
the gravitational acceleration were chosen to match the condi-
tions in cool main-sequence stars. We have carried out simula-
tions corresponding to the following spectral types: F3V, G2V,
K0V, K5V, M0V, and M2V (stellar parameters given in table 1).
Figure 1 shows the location of the six models in the log g-logTe↵
plane along with three isochrones marking the position of the
main sequence (Bressan et al., 2012).

While gravitational acceleration and chemical composition
explicitely enter the simulations as parameters, the e↵ective tem-
perature is indirectly specified through the bottom boundary con-
dition of the code, see Sect. 2.1. For the analysis presented here,
the simulations have been run long enough with fixed inflow-
ing entropy density for any transients to dissappear, however Te↵
varies slightly due to oscillations and granulation. The standard
deviation of the temporal fluctuations of Te↵ is given in table 1.

2.3. Simulation setup

The dimensions of the computational domain (“local box”) were
adapted according to the stellar parameters: the height of the box
was chosen to contain about 13 to 15 pressure scale heights (at
least six below and six above the optical surface). The vertical
cell size (height resolution �z) was set su�ciently small to re-
solve steep temperature gradients and to maintain �z < Hp/5
at every depth, where Hp is the local pressure scale height. For
most of the models, 300 or less cells in the vertical direction
were su�cient to meet these criteria. Only the F3V model with
strongly varying pressure scale height and a very steep local
temperature gradient, required 800 cells in the vertical direc-
tion. The two equal horizontal box dimensions were scaled to
the expected granule (convection cell) size. In order to reduce
the e↵ects of the periodic boundary conditions and obtain good
statistics while maintaining su�cient spatial grid resolution, the
boxes were chosen big enough to contain 30 to 50 granules at

any given time. The horizontal dimensions were resolved into
512 ⇥ 512 grid cells. The largest computational domain of the
simulations thus comprised 512 ⇥ 512 ⇥ 800 ⇡ 2.1 · 108 cells.
Table 2 gives a summary of the computational box dimensions
and grid resolutions.

3. Results
3.1. General morphology of near-surface convection

Figure 2 gives maps of the bolometric intensity emerging ver-
tically from the simulated stellar surfaces for single snapshots
of the time-dependent simulations. All simulations show inten-
sity patterns reminiscent of solar granulation. The typical size
of the granules varies from ⇠5Mm for F3V to ⇠0.3Mm for
M2V. The rms bolometric intensity contrast (denoted by �I in
Table 1) decreases from about 20% for F3V to less than 3% in
the M2V simulation, reflecting decreasing temperature fluctua-
tions on surfaces of constant optical depth (see Sect. 3.3).

There are qualitative changes in the visual appearance of
the surface convection along the sequence of simulated stars.
For instance, the granulation pattern of the F3V model appears
“rough” and irregular owing to numerous shock waves at the
optical surface. Shocks are rarer and weaker in the near-surface
layers of the cooler stars since the typical convective velocities
are lower (also in relation to the sound speed; cf. Fig. 6). At the
cool end of our model sequence, the M-dwarf granules, which
are sustained by the slowest convective flows, have more irregu-
lar shapes but less brightness substructure than their counterparts
on the simulated G- and K-type stars. As we report quantitatively
in Paper II, their dark intergranular lanes are thinner (with re-
spect to the granule size) and vary more strongly in intensity and
width than those of the other stars (see also Ludwig et al., 2002).

Ludwig et al. (2006) found “dark knots” associated with
strong downflows and vortex motion in simulations of convec-
tion in M-type main- and pre-main-sequence objects. Our sim-
ulations show knots of high vorticity associated with strong
downflows in all models (some examples in Fig. 2 are: G2V,
(x, y) = (8.7Mm, 4.4Mm); K5V, (x, y) = (0.36Mm, 0.52Mm);
M0V, (x, y) = (0.45Mm, 0.6Mm)). They become increasingly
stable and prominent at lower e↵ective temperatures. In our
models, some of these vortices are evacuated strongly enough
by the e↵ect of the centrifugal force to become brighter than
their surroundings (cf. vortices in solar simulations studied by
Moll et al., 2011, 2012). Most frequently these bright vortex
structures occur in our two K-type simulations.
A more detailed analysis of the granulation properties and their
e↵ects on spectral lines is given in Beeck et al. (2013, Paper II,
hereafter).

3.2. Velocity field

As the visible granulation pattern is created by convective flows,
it is strongly correlated to the vertical velocities at the opti-
cal surface, �z(z = 0). Figure 3 shows �z(z = 0) for four of the
six simulations. The snapshots are taken at the same time as in
Figure 2. The colour scale of the images saturate at 2 �z,rms(z0)
with z0 := hzi⌧R=1, values of which are given in Table 1. The
granules visible in Figure 2 correspond to upflows, while the
dark intergranular lanes correspond to downdrafts. In the G-,
K-, andM-type simulations, an anti-correlation between size and
mean upflow velocity of the granules is indicated: while most of
the small convection cells appear (almost) saturated in Figure 3,
meaning their velocity reaches 2 �z,rms(z0), the larger granules

3

Figure 2.1: 3D RHD simulation-grid in the H-R diagram. Top panels: simulations computed
with Stagger-code or similar branches (Section 1.3), Stagger-grid (left, Magic et al. 2013b) and
”Trampedach” grid (right, Trampedach et al. 2013). Central panels: the CIFIST grid (left, (Lud-
wig et al. 2009) computed with CO5BOLD code, and the grid (right, Beeck et al. 2013) computed
with MURaM core (Vögler et al. 2005). Bottom panels: the White Dwarf grid (left, Tremblay et al.
2013b) and the AGB one (right, Freytag et al. 2017) computed with CO5BOLD code (Section 1.3).
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Fig. 9. Top and central rows: synthetic stellar disk images in the optical filter for the four simulations of Table 1 having log g=2.2. The intensity
range is [5000, 1.5 × 106] erg cm−2 s−1 Å−1 for [Fe/H] = 0.0 and -1.0; [5000, 2.0 × 106] erg cm−2 s−1 Å−1 for [Fe/H] = -2.0 and -3.0. Bottom panel:
fluctuations of the synthetic visibility curves derived from the above images. The colors have the same meaning as in Fig. 3. We dropped the first
lobe of the visibility curves as in Fig. 7.

demonstrated that closure phases provide the differential planet
to star contrast ratio as a function of wavelength. When observ-
ing star with a faint companion, their fringe patterns add up in-
coherently and the presence of a planet causes a slight decrease
in the phase changes and, consequently, the closure phases. This
difference can be measured with a temporal survey and should

be corrected with the intrinsic closure phases of the parental star.
Second, van Belle (2008) provided a technique based on closure
phases to determine the orbital plane position angle of a planet
transiting in front of the star as well as the planet’s radius us-
ing the high-precision multi-telescope beam combiner (MIRC)

synthetic K giant star

A&A 600, L2 (2017)

Table 1. Log of observations.

Date (UT) Target Nblock TTO Calibrators
(min)

2016 Jul. 6 HD 161096 (� Oph) 2 20 ✏ Ser, 72 Oph, � Aql
2016 Jul. 6 HD 189276 (HR 7633) 1 10 ◆ Cyg, HR 8185
2016 Jul. 6 HD 197989 (✏ Cyg) 1 15 � Lyr
2016 Jul. 7 � Oph 1 25 ✏ Ser, 72 Oph
2016 Jul. 7 HR 7633 1 20 ◆ Cyg,
2016 Jul. 7 ✏ Cyg 1 30 17 Cyg, � Cyg

Notes. TTO is the total time observed. Calibrator diameters (mas):
✏ Ser = 0.689 ± 0.048 (1); 72 Oph = 0.684 ± 0.048 (2); � Aql = 0.518 ±
0.036 (2); ◆ Cyg = 0.586 ± 0.041 (2); HR 8185 = 1.067 ± 0.076 (2);
�Lyr = 0.737 ± 0.015 (3); 17 Cyg = 0.721 ± 0.051 (2);�Cyg = 0.542 ±
0.021 (4). All the diameters, except for ✏ Ser, are in the H band. ✏ Ser
is given in K band, variation across wavelength for this diameter is ex-
timated to be ⇠0.01 mas with negligible e↵ect on the data reduction.
References. (1) Boyajian et al. (2012); (2) Bonneau et al. (2006);
(3) Monnier et al. (2012); (4) Zhao et al. (2008).

dynamics and morphology of RGB stars is important to quantify
the e↵ect of the granulation and magnetic fields, and thanks to its
high angular resolution, interferometry is the ideal tool for this
purpose.

In this Letter, we present the detection of an interferometric
signal at high spatial frequencies for three RGB stars using the
MIRC instrument mounted at the CHARA interferometer. We
analyse the possible causes of this signal.

2. Interferometric observations with MIRC

at CHARA

We collected observations of three stars (Table 1) using the
Michigan Infrared Combiner (MIRC) on the Georgia State
University Center for High Angular Resolution Astronomy
(CHARA). The CHARA array is located on Mount Wilson, CA,
and consists of six 1 m telescopes for a total of 15 baselines rang-
ing in length from 34 m to 331 m, resulting in an angular reso-
lution of ⇠0.5 mas in the H band (ten Brummelaar et al. 2005).
The detailed parameters of the RGB stars are reported in Table 2.

The MIRC (Monnier et al. 2004, 2012) is a six-beam com-
biner operating in the H band (1.5�1.8 µm) at low spectral res-
olution (R = 30). Each observing block consists of observations
of a calibrator, a target, and when possible, a second calibra-
tor. Time spent collecting data on the target ranged within 10
to 30 min, excluding background and other calibration frames,
depending on observing conditions. We used the latest version
of the MIRC reduction pipeline (as of October 2016) and as
previously described in Monnier et al. (2007) and Monnier et al.
(2012). The pipeline uses Fourier transforms to compute squared
visibilities, which are then averaged and corrected for biases.
We determined the bispectrum using the phases and amplitudes
of three baselines in a closed triangle. We calibrated photomet-
ric amplitudes using a beam splitter following spatial filtering
(Che et al. 2010)1. Because we do not expect significant bright-
ness variation over short time periods for these targets, we com-
bined the two nights of observations for each star into single
files, accounting for systematic error by applying multiplicative

1 This research has made use of the Jean-Marie Mariotti Center
SearchCal service Bonneau et al. (2006), available at http://www.
jmmc.fr/searchcal, co-developped by FIZEAU and LAOG/IPAG,
and of CDS Astronomical Databases SIMBAD and VIZIER, available
at http://cdsweb.u-strasbg.fr/

Fig. 1. Top and central panels: squared visibilities with the limb-
darkening fit residuals (top and central panels) at the wavelength band
1.6004 ± 0.0036 µm. The continuous line in the top panel corresponds
to the limb-darkening fit whose parameters are reported in Table 3.
The black horizontal dashed lines in the central panel correspond to
the value of 1�, and the red line shows the value of 3�. Bottom panel:

closure phase data points of � Oph (Table 2) for all the wavelengths.
The red data correspond to closure phase departures larger than 3� (see
Fig. 2). The horizontal dashed lines in the bottom panel display the zero
or ±180� values.

and additive errors as described in Monnier et al. (2012). At
low visibilities (.10�3), the signal-to-noise ratio of the data
decreases because of cross-talk. We therefore remain cautious
when interpreting data at such low visibilities.

The observations were collected in eight di↵erent wave-
length bands: 1.7379 ± 0.0031, 1.7055 ± 0.0033, 1.6711±
0.0035, 1.6361 ± 0.0035, 1.6004 ± 0.0036, 1.5642 ± 0.0037,
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Table 2. Parameters of the RGB stars.

Stars Spectral H mag M [Fe/H] Te↵ log g R

typea [M�] [K] [cgs] [R�]
✏ Cyg K0III-IV 0.200b 1.84± 0.31d -0.11± 0.10d 4778± 49d 2.62± 0.10d 11.08± 0.25d

HR 7633 K4.5IIIa 0.919b – – 4050e 1.70e –
� Oph K2III 0.354c 1.63± 0.18d 0.13± 0.10d 4520± 44d 2.42± 0.07d 13.13± 0.32d

References. (a) Gray et al. (2003); (b) Ducati (2002); (c) Laney et al. (2012); (d) Re↵ert et al. (2015); (e) Lafrasse et al. (2010).

Fig. 2. Closure phase departures from zero or ±180� for all the observed stars and for all the wavelengths. For every data point, the lowest value
between |data-0�|, |data-180�|, and | data+180�| is computed and normalised by the corresponding observed error, �. � Oph is shown in the left

panel, ✏ Cyg in the central, and HR 7633 in the right panel. The horizontal black line corresponds to the value of 1� and the red line to 3�.

Table 3. Apparent diameters of the observed stars at 1.6004 ±
0.0036 µm.

Star LD power-law ✓LD ✓LD �2

exponent [mas] [R�]
✏ Cyg 0.25± 0.01 4.61± 0.02 22.09± 0.15 2.45

HR 7633 0.14± 0.01 2.95± 0.01 178.11± 11.11 1.32
� Oph 0.25± 0.01 4.43± 0.01 23.89± 0.16 1.01

1.5273± 0.0035, and 1.4833 ± 0.0033 µm. In the following, we
use the wavelength band centred at 1.6004 ± 0.0036 µm for the
apparent diameter determination with visibility curves because
it corresponds to the H� continuous opacity minimum (conse-
quently closest to the continuum forming region). For all the
closure phase plots, we used the full set of wavelength bands.

3. Discussion

We fitted the data, based only on the squared visibilities, with
an power-law limb-darkened disk model whose parametric val-
ues are reported in Table 3. Figure 1 displays the example of
� Oph, while the other stars are reported in Figs. A.1 and A.2.
The limb-darkening fit is very good (Table 3) with larger resid-
uals for HR 7633. We report the first measure of the radius for
HR 7633, and while the radius of ✏ Cyg is in good agreement
with Re↵ert et al. (2015), the radius of � Oph is slightly smaller.

The observed closure phases display values di↵erent from
zero or ±180� for all the observed stars. To determine the am-
plitude of these deviations, we selected the lowest value be-
tween |data � 0�|, |data � 180�|, and |data+180�| for each data
point and then normalised it by the corresponding observed er-
ror, �. We plot the data departures in Fig. 2, which shows sev-
eral points diverging from the centrosymmetric case for values
higher than 3�: the closure phase departures are smaller for
�Oph (33 points over 920, 3.6%, higher than 3�), intermedi-
ate for ✏ Cyg (70 points over 1056, 6.6%, higher than 3�), and
larger for HR 7633 (88 points over 1384, 6.3%, higher than 3�).
For � Oph and ✏ Cyg, the spatial frequencies spanned extend to

the fourth lobe, while for HR 7633, they only reach (partially)
the third lobe. The contribution of the small-scale structures in-
creases with the frequency, and that HR 7633 displays departures
already on the second lobe indicates that this star is most likely
the most asymmetric of the three.

Moreover, the closure phase departures of the three stars
seem to be correlated with log g of the stars (Table 2), the
latter is an indicator of the evolutionary phase: the largest
deviations are for HR 7633, which has log g = 1.70. This
denotes that the size of the granules become more signifi-
cant with respect to the disk size as the surface gravity de-
creases, and therefore brightness fluctuations become more im-
portant. This idea is supported by previous work showing even
larger departures from centrosymmetry for very evolved stars
such as AGBs (Wittkowski et al. 2016; Chiavassa et al. 2010c;
Ragland et al. 2006) and red supergiant stars (Montargès et al.
2016; Chiavassa et al. 2010b). However, we also note that we
detected the largest deviations for the faintest star (HR 7633),
and this may indicate that we underestimated the errors.

We now present a tentative explanation of these closure
phase departures. A more complete analysis will be presented
in a forthcoming paper.

Stellar surface asymmetries in the brightness distribution can
be either due to convection-related and/or activity-related struc-
tures, to a companion, or to a clumpy dust envelope around the
stars. In the following, we analyse the di↵erent possibilities.

A first hypothesis concerns convection-related surface struc-
tures a↵ecting the interferometric observables. The expected
convection turnover time in such a star is between hours to
days or weeks, depending on the stellar fundamental parame-
ters. Chiavassa et al. (2010a, 2014) showed that stellar granu-
lation manifests itself as surface asymmetries in the brightness
distribution, and more precisely, in the closure phase signal.

A second hypothesis is the stellar magnetic activity.
Chiavassa et al. (2014) and Ligi et al. (2015) showed that star
spots caused by the stellar magnetic field a↵ect the closure phase
signal in a similar way as the granulation. To determine its im-
pact, we estimated the indicator S MW based on the historic stellar
activity data of chromospheric line emission. It measures the
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Table 2. Parameters of the RGB stars.

Stars Spectral H mag M [Fe/H] Te↵ log g R

typea [M�] [K] [cgs] [R�]
✏ Cyg K0III-IV 0.200b 1.84± 0.31d -0.11± 0.10d 4778± 49d 2.62± 0.10d 11.08± 0.25d

HR 7633 K4.5IIIa 0.919b – – 4050e 1.70e –
� Oph K2III 0.354c 1.63± 0.18d 0.13± 0.10d 4520± 44d 2.42± 0.07d 13.13± 0.32d

References. (a) Gray et al. (2003); (b) Ducati (2002); (c) Laney et al. (2012); (d) Re↵ert et al. (2015); (e) Lafrasse et al. (2010).

Fig. 2. Closure phase departures from zero or ±180� for all the observed stars and for all the wavelengths. For every data point, the lowest value
between |data-0�|, |data-180�|, and | data+180�| is computed and normalised by the corresponding observed error, �. � Oph is shown in the left

panel, ✏ Cyg in the central, and HR 7633 in the right panel. The horizontal black line corresponds to the value of 1� and the red line to 3�.

Table 3. Apparent diameters of the observed stars at 1.6004 ±
0.0036 µm.

Star LD power-law ✓LD ✓LD �2

exponent [mas] [R�]
✏ Cyg 0.25± 0.01 4.61± 0.02 22.09± 0.15 2.45

HR 7633 0.14± 0.01 2.95± 0.01 178.11± 11.11 1.32
� Oph 0.25± 0.01 4.43± 0.01 23.89± 0.16 1.01

1.5273± 0.0035, and 1.4833 ± 0.0033 µm. In the following, we
use the wavelength band centred at 1.6004 ± 0.0036 µm for the
apparent diameter determination with visibility curves because
it corresponds to the H� continuous opacity minimum (conse-
quently closest to the continuum forming region). For all the
closure phase plots, we used the full set of wavelength bands.

3. Discussion

We fitted the data, based only on the squared visibilities, with
an power-law limb-darkened disk model whose parametric val-
ues are reported in Table 3. Figure 1 displays the example of
� Oph, while the other stars are reported in Figs. A.1 and A.2.
The limb-darkening fit is very good (Table 3) with larger resid-
uals for HR 7633. We report the first measure of the radius for
HR 7633, and while the radius of ✏ Cyg is in good agreement
with Re↵ert et al. (2015), the radius of � Oph is slightly smaller.

The observed closure phases display values di↵erent from
zero or ±180� for all the observed stars. To determine the am-
plitude of these deviations, we selected the lowest value be-
tween |data � 0�|, |data � 180�|, and |data+180�| for each data
point and then normalised it by the corresponding observed er-
ror, �. We plot the data departures in Fig. 2, which shows sev-
eral points diverging from the centrosymmetric case for values
higher than 3�: the closure phase departures are smaller for
�Oph (33 points over 920, 3.6%, higher than 3�), intermedi-
ate for ✏ Cyg (70 points over 1056, 6.6%, higher than 3�), and
larger for HR 7633 (88 points over 1384, 6.3%, higher than 3�).
For � Oph and ✏ Cyg, the spatial frequencies spanned extend to

the fourth lobe, while for HR 7633, they only reach (partially)
the third lobe. The contribution of the small-scale structures in-
creases with the frequency, and that HR 7633 displays departures
already on the second lobe indicates that this star is most likely
the most asymmetric of the three.

Moreover, the closure phase departures of the three stars
seem to be correlated with log g of the stars (Table 2), the
latter is an indicator of the evolutionary phase: the largest
deviations are for HR 7633, which has log g = 1.70. This
denotes that the size of the granules become more signifi-
cant with respect to the disk size as the surface gravity de-
creases, and therefore brightness fluctuations become more im-
portant. This idea is supported by previous work showing even
larger departures from centrosymmetry for very evolved stars
such as AGBs (Wittkowski et al. 2016; Chiavassa et al. 2010c;
Ragland et al. 2006) and red supergiant stars (Montargès et al.
2016; Chiavassa et al. 2010b). However, we also note that we
detected the largest deviations for the faintest star (HR 7633),
and this may indicate that we underestimated the errors.

We now present a tentative explanation of these closure
phase departures. A more complete analysis will be presented
in a forthcoming paper.

Stellar surface asymmetries in the brightness distribution can
be either due to convection-related and/or activity-related struc-
tures, to a companion, or to a clumpy dust envelope around the
stars. In the following, we analyse the di↵erent possibilities.

A first hypothesis concerns convection-related surface struc-
tures a↵ecting the interferometric observables. The expected
convection turnover time in such a star is between hours to
days or weeks, depending on the stellar fundamental parame-
ters. Chiavassa et al. (2010a, 2014) showed that stellar granu-
lation manifests itself as surface asymmetries in the brightness
distribution, and more precisely, in the closure phase signal.

A second hypothesis is the stellar magnetic activity.
Chiavassa et al. (2014) and Ligi et al. (2015) showed that star
spots caused by the stellar magnetic field a↵ect the closure phase
signal in a similar way as the granulation. To determine its im-
pact, we estimated the indicator S MW based on the historic stellar
activity data of chromospheric line emission. It measures the
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1.5273± 0.0035, and 1.4833 ± 0.0033 µm. In the following, we
use the wavelength band centred at 1.6004 ± 0.0036 µm for the
apparent diameter determination with visibility curves because
it corresponds to the H� continuous opacity minimum (conse-
quently closest to the continuum forming region). For all the
closure phase plots, we used the full set of wavelength bands.

3. Discussion

We fitted the data, based only on the squared visibilities, with
an power-law limb-darkened disk model whose parametric val-
ues are reported in Table 3. Figure 1 displays the example of
� Oph, while the other stars are reported in Figs. A.1 and A.2.
The limb-darkening fit is very good (Table 3) with larger resid-
uals for HR 7633. We report the first measure of the radius for
HR 7633, and while the radius of ✏ Cyg is in good agreement
with Re↵ert et al. (2015), the radius of � Oph is slightly smaller.

The observed closure phases display values di↵erent from
zero or ±180� for all the observed stars. To determine the am-
plitude of these deviations, we selected the lowest value be-
tween |data � 0�|, |data � 180�|, and |data+180�| for each data
point and then normalised it by the corresponding observed er-
ror, �. We plot the data departures in Fig. 2, which shows sev-
eral points diverging from the centrosymmetric case for values
higher than 3�: the closure phase departures are smaller for
�Oph (33 points over 920, 3.6%, higher than 3�), intermedi-
ate for ✏ Cyg (70 points over 1056, 6.6%, higher than 3�), and
larger for HR 7633 (88 points over 1384, 6.3%, higher than 3�).
For � Oph and ✏ Cyg, the spatial frequencies spanned extend to

the fourth lobe, while for HR 7633, they only reach (partially)
the third lobe. The contribution of the small-scale structures in-
creases with the frequency, and that HR 7633 displays departures
already on the second lobe indicates that this star is most likely
the most asymmetric of the three.

Moreover, the closure phase departures of the three stars
seem to be correlated with log g of the stars (Table 2), the
latter is an indicator of the evolutionary phase: the largest
deviations are for HR 7633, which has log g = 1.70. This
denotes that the size of the granules become more signifi-
cant with respect to the disk size as the surface gravity de-
creases, and therefore brightness fluctuations become more im-
portant. This idea is supported by previous work showing even
larger departures from centrosymmetry for very evolved stars
such as AGBs (Wittkowski et al. 2016; Chiavassa et al. 2010c;
Ragland et al. 2006) and red supergiant stars (Montargès et al.
2016; Chiavassa et al. 2010b). However, we also note that we
detected the largest deviations for the faintest star (HR 7633),
and this may indicate that we underestimated the errors.

We now present a tentative explanation of these closure
phase departures. A more complete analysis will be presented
in a forthcoming paper.

Stellar surface asymmetries in the brightness distribution can
be either due to convection-related and/or activity-related struc-
tures, to a companion, or to a clumpy dust envelope around the
stars. In the following, we analyse the di↵erent possibilities.

A first hypothesis concerns convection-related surface struc-
tures a↵ecting the interferometric observables. The expected
convection turnover time in such a star is between hours to
days or weeks, depending on the stellar fundamental parame-
ters. Chiavassa et al. (2010a, 2014) showed that stellar granu-
lation manifests itself as surface asymmetries in the brightness
distribution, and more precisely, in the closure phase signal.

A second hypothesis is the stellar magnetic activity.
Chiavassa et al. (2014) and Ligi et al. (2015) showed that star
spots caused by the stellar magnetic field a↵ect the closure phase
signal in a similar way as the granulation. To determine its im-
pact, we estimated the indicator S MW based on the historic stellar
activity data of chromospheric line emission. It measures the

L2, page 3 of 5

C losu re 
phase 

depa r t u
re s 

correl
ate

d with su
rfac

e g
rav

ity 

Log(g) = 2.42   
3.6 % of point 
higher that 3σ

Log(g) = 2.62   
6.6 % of point 
higher that 3σ

Log(g) = 1.70   
6.3 % of point 
higher that 3σ

Chiavassa et al. 2017, A&A, 600, L2



END


