PLATO

K. Belkacem & M.J. Goupil

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

PLATO (Planetary Transits and Oscillation of Stars)

Key dates :

- PLATO selected as ESA M3 mission (Feb. 2014)
- PLATO adopted by ESA in June 2017
- Currently in phase B2 (consolidated definition phase)
- Phase C (consolidated design and implementation) : Q4 2019-Q4 2023
- Launch is expected in 2026

PI : *H. Rauer (DLR)* Science coordinator : *D. Pollacco (Warwick Univ.)*

Launch by Soyuz-Fregat2-1b from Kourou in 2026 (compliant with a Ariane 6 launch)

PLATO main objectives

Characterize planets to: • explore planet diversity

- detect and characterize terrestrial planets in the habitable zone
 - constrain planet formation and evolution processes

Determine the bulk properties (mass, **radius**, mean density) of planets in a wide range of systems, including terrestrial planets in the habitable zone of solar-like stars.

Specificité of PLATO : to derive accurate planetary system age

The PLATO expected performances

 ✓ Stellar population computed with the Besançon Model (A. Robin 2017) adapted for a PLATO 2yr long run

- All stars simulated
- P1 stars
- *Kepler* field
- P1 stars in Kepler field

PLATO main objectives

Characterize planets to: • explore planet diversity

- detect and characterize terrestrial planets
- constrain planet formation and evolution processes

Stellar science and asteroseismology:

 precise and accurate characterization of stars hosting planets : stellar mass, radius and age

This requires

• to improve our knowledge of the internal structure and evolution of low-mass stars

PLATO main objectives

Characterize planets to: • explore planet diversity

- detect and characterize terrestrial planets
- constrain planet formation and evolution processes

Stellar science and asteroseismology:

- precise and accurate characterization of stars hosting planets (in particular ages)
 - Improve our knowledge of the internal structure of low-mass stars

Complementary science:

- Seismology of massive stars
- Galactic population studies
 - and much more...

source : <u>http://www.octave.ph.bham.ac.uk/Outreach.html#three</u>

Transits

Transits

Radial velocities

Radial velocities

Asteroseismology

Transits

- **Simultaneous** *transit and asteroseismic measurements*
- **Synergies** between photometric, spectroscopic, and astrometric observations

Precise and accurate characterized planetary systems

Needs precise accurate limb darkening (for transit fitting and interferometric radii)

PLATO instrument

- 24 normal 12cm cameras, cadence 25 s, white light - 2 fast 12cm cameras, cadence 2.5 s, 2 colors - Dynamical range: $4 \le mv \le 16$ - Field-of-View: ~ 2232 deg² with 4 groups of cameras

respectively looking on 301/deg²/247/deg², 735 deg², and 949 deg²

Observatoire

LESIA

Prime contractor : OHB

PLATO Observing strategy

- 4 groups of cameras
- Baseline observing strategy: 4 yrs nominal
 - 2 long pointing (LP) of 2 years
 - Optionally 3 years LP and 1 year "step-and-stare" phase.
- The final observing strategy will be fixed ~2 yrs before launch.
- the payload is designed for 8 years so extension can be expected...

Long Observing Pointing (LOP)

Short Observing Pointing (SOP)

The PLATO samples

- Samples of stars will be observed with different numbers of telescopes corresponding to different noise levels
- ✓ Samples of target stars with the current baseline observing strategy :
- P1 ≥ 15 000 (goal 20 000) dwarfs and subgiants, spectral type F5-K7, 8 ≤ mag ≤ 11, noise ≤ 34 ppm.√h, time sampling 25s

 \rightarrow using 24 cameras

- P2 \geq 1 000 dwarfs and subgiants, spectral type F5-K7, V \leq 8.2, noise \leq 34 ppm. \sqrt{h} , (300 stars with 2 colours)
- $P4 \ge 5\ 000\ M$ dwarfs $V \le 16$, time sampling 25s.
- P5 \ge 245 000 dwarfs and subgiants, spectral type F5-K7, V \le 13, time sampling 600s and 25s for 9000 stars.

The PLATO expected performances

✓ Stellar population computed with the Besançon Model (A. Robin 2017) adapted for a PLATO 2yr long run

- All stars simulated
- P1 stars
- *Kepler* field
- P1 stars in Kepler field

The PLATO noise

✓ Stellar population computed with the Besançon Model (A. Robin 2017) adapted for a PLATO 2yr long run

Asteroseismology with PLATO / TASC3 KASC10

The PLATO noise

✓ Plato noise including :

- Target photon noise
- Random noise from the instrument
- Residual noise after correction from systematics

 ✓ the noise level for a target depends on the number of cameras

✓ for 24 cameras, the noise level is comparable to the Kepler Legacy sample

Kepler Legacy sample is an excellent benchmark for PLATO

Asteroseismology with PLATO / TASC3 KASC10

noise estimator for GOV star

The PLATO data products

- L0 products: raw light-curves
- L1 products: calibrated light-curves and centroids
- L2 products: Science results
- L3 product: Final catalogue of confirmed planetary systems

	Validated imagettes, light curves and centroid curves	DP0	L0
	Calibrated imagettes, light curves and centroid curves	DP1	L1
	Planetary candidate transits and their parameters	DP2	L2
	Asteroseismic mode parameters	DP3	L2
	Stellar rotation and activity	DP4	L2
Ī	Stellar radii, masses, and ages	DP5	L2
	Living catalogue of confirmed planetary systems and their characteristics using light curves and transit time variations	DP6	L2
ĺ	Follow-up ground-based observations		Lg
	Living catalogue of confirmed planetary systems and their characteristics using new ground-based follow-up observations (Lg)	DP6+Lg	L3

Stellar science and asteroseismology

must provide data products DP3

to DP5

The PLATO data products

Other data products:

- **PDP (Preparatory Data Products):** product used by the stellar pipeline. These data are computed before operations, stored in the data base and not modified during the run of the pipeline.
- ADP (Additional Data Products): delivered by the stellar part of the pipeline L1--> L2
- **IDP (Intermediate Data Products):** products produced at L2 level by the pipeline that are required to be stored, but that are not formal outputs of the L2 pipeline (DP3-DP5).
- Benchmark stars as tests and validation of the results of the stellar pipeline before, during and after opera

PLATO Science Management (PSM): Stellar Science

 PSM stellar science must provide the specifications and algorithms to the PDC for deriving DP3 to DP5 with associated error-bars

Still a lot of preparatory work to do before launch !

Especially to assess both the precision and accuracy of the data products

If you want to join or for any other inquiry: **plato.wp120-office@obspm.fr**

END

Website for statass/cidate-stesci.lesia.obspm.fr/

	Search	
Observatoire LESIA	PLATO WP 120 Stellar Science	A CONTRACT OF CONTRACT.
Home Organisation	3	News PLATO as it is: A legacy mission for Galactic
Events Timeline		Future Events PLATO week #5, Porto 23-27 Oct 2017
Documents News & Outreach	-1 8000 7000 6000 5000 4000 T _{eff} [K]	News Green light for the PLATO mission
Get involved!	CII	

Wiki (consortium only)

The PLATO mission

PLAnetary Transits and Oscillations of stars (PLATO) is the third medium-class mission in ESA's Cosmic Vision

If you want to join or for any other inquiry: plato.wp120-office@obspm.fr

PLATO main objectives

Characterize planets to: • explore planet diversity

detect and characterize terrestrial planets

♦

Need to derive accurate planetary system age

PLATO instrument

- ~ 80cm height
- <u>PLATO Camera:</u> ~ 30cm diameter ~ 20kg
 - 4 CCD per Camera $\rightarrow \sim 40^{\circ}$ FoV

PLATO Mission Consortium

