Splinter on winds/environment

Eric Lagadec Agnes Lebre Ana Palacios Isabelle Tallon-Bosc Markus Wittkowski

Impact of winds on exoplanets

- Star/planet formation
 - Strong star-planet interaction
 - Not targets for SPICA
- Main sequence
 - M dwarfs: strong magnetic interaction, needs complementary observations like SPIROU, magnetic field measurements
 - Otherwise no significant impact of winds on the MS
- Later evolution
 - There is impact from winds (red giants, evolved stars, massive evolved stars), but these are not (prime) exoplanet targets

Impact of winds on asteroseismology targets

- Wind/mass loss has an impact on red giants
 - Red giants might not be main targets for PLATO, only as complementary science
 - For red giants, CHARA-SPICA can get estimates of flux fractions of the CSE and geometric sizes of envelopes
- Sub-giants: mass loss more negligible than for red giants
- More massive stars, B, Be, B[e] stars
 - not core targets, but winds would have an impact.
 - With SPICA, need to model an additional geometrical component
 - SPICA can be complementary to asteroseismology missions for hotter stars

Impact of winds on SBCRs

- SBCRs explore
 - Dwarfs, subgiant, giants
 - Different metallicities
 - B, mostly FK, stars some M dwarfs
 - Target list will already be 'cleaned'
- For hotter stars we have to take environments into account (for creating and using them)
- M dwarfs have winds, which need to be taken into account (for creating and using them)
- Impact on infrared photometry, reddening (for creation)
- For K giants there is impact from mass loss, which creates reddening

Selection of 200 bright stars

- AGB/RSG stars
 - mV<5 excludes many red dust-enshrouded stars
 - Explore possibility to include AGB/Miras/RSG/post-RSG (around maximum light)
 - Define upper limit on the angular diameter, so that they are not over-resolved
 - get complementary short-baseline data (e.g. SPHERE, or speckle imaging)
 - Observe few stars in details (incl. shocks in Halpha) with time-series (AI: need to find targets)
 - There are ongoing projects to observe large samples of AGB stars, need to explore the sample
- Winds in K giants / first giant branch stars:
 - Better targets for CHARA/SPICA in terms of angular size
 - Do statistics for a large number of stars on CSE flux fraction, dust shell sizes
- O stars: no targets
- B, Be, B[e] stars:
 - Certainly interesting targets for CHARA/SPICA
 - Velocity measurements with MR spectral resolution
 - Not much expertise in our splinter meeting
- Variable stars (Cepheids, del Sct, RR Lyrae)
 - find/characterize envelopes
 - Are CSEs common for these targets?

Complementary ways/observations

- Combine uv-plane filling with 8m-class AO instruments (e.g. SPHERE)
- Spectro-polarimetric measurements
 - pMS, M dwarfs: Magnetic fields
 - Evolved stars: Linear polarization
- Models
 - Cool stars: need to include more physical processes (magnetic fields, radiative pressure on lines in addition to convection), constrain new models
 - Hot star wind models
- Evolved stars: Combine SED, spectroscopy, interferometric imaging at several wavelength, CO observations, etc.
- VLTI-MATISSE observations of dust: difficult to find common targets?
- B, Be, B[e]:
 - Radio observations (free-free emission)
 - Near/mid-IR imaging observations

Strategies

- Time series for variable stars
- Some stars observable only at maximum light?
- Spectral resolution
 - AGB/RSG stars would need higher spectral resolution to measure velocity fields, but those stars are mostly too resolved for CHARA-SPICA
 - B/Be/B[e] stars: Resolution of 3000 is sufficient to study velocity fields
- To do: get (K magnitude and) angular diameters of all stars brighter than mV=4...5 and observable by CHARA; define upper limit on the angular diameter to not overresolve the stars