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SBRC

• Before 2024 : Remove binaries from sample 
used for construction of SBCR (for PLATO)

• Except for : O-type and early B-type stars : 
well known procedure that be able to treat 
binarity (not PLATO targets)



EXOPLANETS

• 1) Check for binarity
• 2) If exoplanet in binary →  orbit follow-up 

(future)



ASTEROSEISMOLOGY

If star is an asteroseismic binary 
• 1) Calibrating seismic relations

• CHARA/SPICA orbit + (parallax OR RV) →  MA, MB  
• CHARA/SPICA  two diameters + parallax →  RA, RB

• Maybe a few valid targets (before PLATO)
• Orbit follow-up with PLATO seismology

• 2) CHARA/SPICA observations can flag for 
multiplicity 

(for binaries that have not already been 
detected)



GENERAL

• General
• Pierre’s catalogue (GAIA + Hipparcos) →  

Benchmark stars
• M/R separated if follow orbit

• →  selection of candidates

• Calibrators
• Multiplicity is a problem
• For V < 7 and  < 0.1 mas →  about 100 stars available 

for CHARA/SPICA : BIII or BIV stars that should probably 
not be multiple

• GAIA can help to remove some binaries from the 
calibrator catalogue

• CHARA/SPICA will also clean this sample →  all these stars 
have to be in target list



CONCLUSION

• In most cases, binarity is a plus
• Most identify cases are not specific to one of 3 

scientific objectives
• Binarity : scientific case for CHARA/SPICA ?!



Hip-Gaia proper motion anomaly 
and binarity of Hipparcos stars

P. Kervella, F. Arenou, F. Mignard, F. Thévenin
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• Sensitivity in mass and orbital radius ?
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Fig. 1. Principle of the proper motion anomaly �µH/G2 determination.
We assume in the figure that the secondary object B has a negligible
photometric contribution, and that the photocenter of the system is lo-
cated at the position of star A.

has to take into account in particular the change in perspective
of the space velocity vector and the light travel time e↵ects (see
Sections 3.3 and 3.4).

In the present approach, we implicitly consider that the µHG
vector is a proxy for the PM of the barycenter of the system, and
the ‘instantaneous’ µHip/G2 vectors contain the accumulation of
the barycenter and ‘virtual orbital’ velocities. Under these hy-
potheses, the PMa vector �µ corresponds to the projected veloc-
ity vector of the photocenter around the barycenter at the Hip-
parcos or GDR2 epochs.

3.2. Parallax at Hipparcos epoch

The GDR2 parallaxes have in average a significantly higher ac-
curacy than that of the Hip2 catalog, typically by one order of
magnitude (except for some very bright stars). To determine the
parallax of a given star at the Hip2 epoch, we extrapolated the
$G2 value to the Hipparcos epoch using the three-dimensional
space velocity vector of the object (µ↵, µ�, vrad) measured at the
GDR2 epoch. To obtain a rigorous computation una↵ected by
the spherical projection e↵ects, we transformed the positions and
3D PM vectors (µ and the radial velocity) at the GDR2 epoch to
derive the distance of the star at the Hipparcos epoch. We then at-
tributed the corresponding parallax to the Hipparcos epoch. This
extrapolation in time is justified as we do not aim at detecting
a change of velocity along the radial axis from the astromet-
ric data, but only in the tangential plane (µ↵, µ�). We took into
account the light travel time e↵ect for the extrapolation of the
GDR2 parallax to the Hipparcos epoch (Sect. 3.4).

3.3. Perspective effects

Due to the combination of the tangential and radial motion of the
stars, the geometrical projection of their space velocity vector on
the tangential plane (orthogonal to the line of sight) changes with
time. In the present work, we treated the position and velocity
of all stars in cartesian Galactic coordinates, in order to prop-
erly integrate the geometrical correlations between the RV and
the transverse PM components. For the management of the as-
trometric transformations between coordinate systems, we used
extensively the tools available in the Astropy2 library version
3.0 (Astropy Collaboration et al. 2018).
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3.4. Light travel time

Due to the radial velocity of the targets, the di↵erence in dis-
tance between the Hip2 and GDR2 epochs results in a di↵erent
light propagation time. The amplitude of this e↵ect (equivalent
in its principle to the classical aberration of light) can be con-
siderable, as e.g., for the very fast moving Kapteyn’s star (vr ⇡
+245 km s�1) whose geometric distance to the Sun increased by
1200 au between the Hipparcos and GDR2 epochs. This corre-
sponds to an additional light propagation time of 7.2 days for the
GDR2 epoch, and a considerable tangential shift on the sky of
171 mas. To compare the absolute PM vectors µHG and µG2 of
the star, we must either correct both vectors for the light travel
time e↵ect, or not correct either of them and work in the ‘aber-
rated’ referential. As the GDR2 pipeline does not correct for the
light travel time e↵ect in the computation of the astrometric so-
lution, we choose not to correct the mean µHG vector to be in the
same ‘aberrated’ referential as the GDR2 PMs.

As the radial velocity is una↵ected by the light travel time
e↵ect, we took into account the di↵erential light travel time cor-
rection to extrapolate the stellar parallaxes from the GDR2 epoch
to the Hipparcos epoch. The magnitude of the correction is how-
ever negligible for all but the nearest stars.

3.5. Measured proper motion anomalies

The PM vectors and the levels of PM anomalies of the stars of
our sample located within ⇡ 5 pc from the Sun are presented in
Table 1. The results for the more distant stars up to 40 pc are
available electronically from the CDS.

4. Discussion

4.1. Sensitivity to companion mass

The velocity v1 of a star orbiting on a circular orbit of radius r

around the center of mass of a binary system is:

v1 =

s
G m

2
2

(m1 + m2) r
(3)

with m1 and m2 the masses of the two components. When m2 ⌧
m1, and for an orbital plane perpendicular to the line of sight, we
have the simpler expression:

m2p
r
=

r
m1

G
v1 =

r
m1

G

 
�µ[mas a�1]
$[mas au�1]

⇥ 4740.470
!

(4)

where �µ is the PMa, identified to the tangential orbital veloc-
ity of the primary star and $ its parallax. The constant multi-
plicative term in brackets in Eq. 4 is intended to transform the
ratio of the �µ and $ quantities in their usual units (indicated
in brackets) into a velocity expressed in m s�1. From a single �µ
measurement and an estimation of the mass m1 of the primary,
it is therefore possible to derive an estimate of the mass m2 of
a companion normalized to the square root of the orbital radiusp

r. We adopt the notation m
†
2 = m2/

p
r in the rest of the present

paper to refer to the normalized companion mass, with a physical
unit of MJ au�1/2 except otherwise noted.

We estimate the mass m1 of our target stars using the ap-
proach described in Sect. 2.3.

Article number, page 4 of 23

A&A proofs: manuscript no. Nearby-PM-v1r1

+G
A

BµHG

ΔµG2 = µG2-µHG

µG2

+G
A

ΔµH = µH-µHG

Hipparcos Gaia DR2

Fig. 1. Principle of the proper motion anomaly �µH/G2 determination.
We assume in the figure that the secondary object B has a negligible
photometric contribution, and that the photocenter of the system is lo-
cated at the position of star A.
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magnitude (except for some very bright stars). To determine the
parallax of a given star at the Hip2 epoch, we extrapolated the
$G2 value to the Hipparcos epoch using the three-dimensional
space velocity vector of the object (µ↵, µ�, vrad) measured at the
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time. In the present work, we treated the position and velocity
of all stars in cartesian Galactic coordinates, in order to prop-
erly integrate the geometrical correlations between the RV and
the transverse PM components. For the management of the as-
trometric transformations between coordinate systems, we used
extensively the tools available in the Astropy2 library version
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4.2. Statistical effect of orbital inclination

The measured PMa concerns only the two tangential compo-
nents of the orbital velocity of the primary. We thus obtain from
Eq. 4 a lower limit of the true normalized mass m

†
2 of the com-

panion. The statistical inclination of a randomly oriented orbit
in space is i = 60+21

�27 deg. From geometrical considerations, the
norm of the measured 2D PM vector corresponds to ⌘ = 87+12

�32%
of the norm of the 3D orbital PM vector. We therefore multiplied
the observed �µ by ⌘�1 to estimate the de-projected distribution
of the companion mass m

†
2 (propagating the associated uncer-

tainties).

4.3. Companions from proper motion anomaly

The PM measurements listed in the Hip2 and GDR2 catalogs
are not instantaneously measured quantities. They result from
the adjustment of a set of transit observations obtained over a
period of �tH = 1227 d (Perryman et al. 1997) and �tG2 = 668 d
(Gaia Collaboration et al. 2018a), respectively. The PMa �µ is
therefore a time average of the intrinsic velocity vector of the
star over the observing period �t. As a consequence, if the or-
bital period of the system is significantly shorter than �t, then
the PMa will be decreased by the temporal smearing of the sig-
nal. If the orbital period is exactly �t, no �µ will be detectable
(for a uniform distribution of the transits over the observing pe-
riod). The di↵erential astrometric signal (�µ) will be decreased
by the following factor �:

� =
1

�t |�µ(0)|

������

Z �t

0
�µ(t) dt

������ (5)

with µ↵,� the RA and Dec components of the di↵erential PMa.
For a circular face-on orbit, we can represent the PM vector as:

�µ↵,�(t) = K

"
sin

 
2⇡t
P

!
, cos

 
2⇡t
P

!#
(6)

where P is the orbital period and K is the amplitude of the astro-
metric wobble. We can thus write the � components in ↵ and �:

�↵,� =
1
�t

"Z �t

0
sin

 
2⇡t
P

!
dt,

Z �t

0
cos

 
2⇡t
P

!
dt

#
(7)

�↵,� =
P

2⇡�t

" 
1 � cos

2⇡�t
P

!
,

 
sin

2⇡�t
P

!#
(8)

The global � factor on the norm of the PMa is thus:

�(P, �t) =
Pp
2⇡�t

r
1 � cos

2⇡�t
P
, (9)

that we can rewrite using the normalized period P̄ = P/�t:

�(P̄) =
P̄p
2⇡

r
1 � cos

2⇡
P̄
, (10)

For P � �t, we verify that � = 1, and for P = �t, � = 0.
The shape of the � function is presented in Fig. 2. The orbital
radius rG2 corresponding to the observing period �tG2 of GDR2
is listed in Table 2, together with the companion mass sensitivity
m2 normalized at 1 au. To produce sensitivity curves as a func-
tion of orbital radius, we normalize in the following analysis the

achieved companion sensitivity from the PMa by multiplying it
by ��1. The sensitivity curve m2(r) as a function of the detected
linear tangential PMa between the GDR2 measurement and the
mean Hip2-GDR2 PM vector |�µG2| and the linear orbital radius
r is therefore:

m2(r) =
p

r

� [P(r)/�t]

r
m1

G

�vT,G2

⌘
(11)

where P(r) is the period corresponding to the orbital radius r (for
m2 ⌧ m1):

P(r) =

s
4⇡2r3

G m1
(12)

and �vT,G2 is the norm of the tangential PMa vector converted
to linear velocity using the GDR2 parallax. The parameters m1
and �vT,G2 are listed for each star in Table 2. This allows to com-
pute the possible (m2, r) combinations corresponding to a given
observed tangential velocity anomaly.

4.4. Sensitivity limit

The normalized mass m
†
2 is proportional to the square root of the

primary star mass
p

m1 and to the tangential velocity anomaly
�vT. The sensitivity of the detectable normalized mass thus de-
creases as the primary mass increases (as a function of

p
m1) and

decreases linearly with the increasing distance. The accuracy of
�vT is in principle set jointly by the PM accuracy and the paral-
lax. But as this is a di↵erential quantity, the uncertainty on the
parallax has in practice a negligible contribution for the nearby
stars of the present work.

The median accuracy of the norm of the PMa vector �µG2 =
µG2 � µHG of the ⇡ 4000 tested stars in common between the
Hip2 and GDR2 catalogs is �(µ) = 242 µas a�1 and the corre-
sponding median �vT accuracy is therefore �(�vT) = 1.15 m s�1

per parsec of distance. The median accuracy of the µHG long-
term proper motion is �(µHG) = 39 µas a�1, and its contribution
to the uncertainty on the PMa is therefore negligible compared to
the GDR2 uncertainty. For a solar mass star, the achieved PMa
accuracy of 242 µas a�1 corresponds to a theoretical sensitivity
on the detection of companions of:

�
⇣
m
†
2

⌘
= 0.040 MJ au�1/2 pc�1 = 13 M� au�1/2 pc�1 (13)

It is however not the practical sensitivity that can be achieved
with the PMa technique for all orbital radii, due to the averag-
ing over the observing window �t, that induces a dependence
of the detectable normalized mass as a function of the inverse
of the � function (Fig. 2 and Eq. 10). Considering the �tG2 =
668 d observing window of Gaia, the e↵ective GDR2 sensitiv-
ity is limited for a solar twin to approximately 0.050 MJ pc�1 =
16 M� pc�1 at an orbital radius of 3 au (Porb = 5.2 years).

4.5. Companions from astrometric excess noise

For orbital periods shorter than �t, the astrometric wobble of the
star around the center of mass will appear as a noise on the astro-
metric solution of the star. The ‘excess noise’ quantity provided
in the GDR2 catalog (epsi, here noted ‘✏i’) corresponds to the
extra noise that must be added to the Gaia individual observa-
tions to reach a reduced �2 of 1 in the astrometric fit (Lindegren
et al. 2018). Bright objects are subject to a number of possible
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Fig. 2. Relative sensitivity � of the PMa to orbiting companions as a
function of the orbital period P normalized to the observing time �t
(e.g., �tG2 = 668 days for GDR2).

simple relation:

m2(r) =
p

2 ✏i
$ r

m1. (14)

The factor
p

2 in this expression is due to the fact that ✏i is a stan-
dard deviation (expressed in mas) while the companion mass is
linked to half of the peak-to-peak amplitude. Contrary to the PM
anomaly, the sensitivity of the ✏i parameter to companion mass
decreases for long periods (P > �t), as only a fraction of the
orbit is covered during the observations, thus reducing the as-
trometric signature. It is therefore in principle a complementary
indicator to the PMa. The sensitivity also decreases for the very
short periods due to the minimal astrometric wobble.

4.6. Resolved binaries with stellar mass companions

The gravitationally bound binary systems for which both compo-
nents are massive and spatially resolved by Gaia have a di↵erent
behavior in terms of PMa as the binaries for which m2 ⌧ m1.
When m2 ⇡ m1, the center of mass of the system cannot be
considered as being close to the photocenter, as this is the case
for planetary mass companions. In this case, the computed µHG
mean PM between the Hipparcos and GDR2 epochs therefore
does not correspond any more to the PM of the center of mass.
In other words, when the orbital motion amplitude between the
Hipparcos and GDR2 epochs is not negligible compared to the
PM of the center of mass, then the derived PMa does not corre-
spond simply to the tangential orbital velocity vector. We clearly
notice this e↵ect in the determined PMa of resolved binary stars,
as they exhibit PMa vectors with precisely opposite directions
(✓B = ✓A ± 180�). This is due to the fact that the component of
the orbital velocity of each star projected on the direction of their
mean PM has been subtracted to compute the PMa.

It is possible to compute the PM of the center of mass, us-
ing an a priori estimate of the masses of the two stars (see, e.g.,
Kervella et al. 2016b for ↵ Cen AB). We repeat this computa-
tion for both the Hipparcos and GDR2 catalog positions, and we
use these two values to determine the mean µHG,AB PM vector of
the center of mass of stars A and B. In our simplified approach,
we have to adopt model values of the masses of the two stars

Fig. 3. Two-dimensional histogram of the distances d to the stars of our
sample as a function of the primary mass m1. The excluded domains
from the sensitivity limit of Hipparcos and the saturation limit of Gaia
(G ⇡ 3) are shown as hatched areas, considering the mass-luminosity
relation of main sequence stars from Pecaut & Mamajek (2013).

to determine the position of the center of mass. This is how-
ever not needed if radial velocities are available for the two stars
at two di↵erent epochs. In this case, it is possible to determine
the mass ratio from the ratio of the orbital velocities (see, e.g.,
Kervella et al. 2016a). The uncertainties on the masses of the
two stars must be taken into account, and degrade the accuracy
of the estimated barycenter position. The subtraction of µHG,AB
from the catalog PM vectors of each star then provides their in-
dividual tangential orbital velocity vectors. Sample applications
of the PMa analysis to the nearby binaries 61 Cyg, GJ 725 and
GJ 338 are presented in Sect. 6.1.

5. Overview of results

5.1. Star sample and binarity fraction

The median mass of the ⇡ 4000 stars of our PMa sample is
m̄1 = 0.85+0.35

�0.25 M�, and their median radius is R̄1 = 0.83+0.59
�0.24 R�.

The coincidence of these two numerical values expressed in solar
units is expected from the linearity of the mass-radius relation for
low mass main sequence stars (see e.g., Demory et al. 2009). The
completeness of our sample is limited both by the photometric
sensitivity limit of Hipparcos (V = 12.4), that sets a maximum
distance to the observed stars of a given spectral type, and the
saturation limit of Gaia (G = 3) that prevents the observation of
the nearest bright stars. We show in Fig. 3 the two-dimensional
histogram of the (m1, d) combinations of our sample.

Fig. 4 shows the mass distribution of the stars that are present
in Hip2+GDR2 or only in the GDR2 (with a limit in brightness
of G < 13), and the resulting completeness level of our sample
as a function of the stellar mass. As expected, a severe limitation
in terms of completeness comes from the limiting magnitude of
Hipparcos, that cuts the majority of the mid-K and M spectral
types below m1 ⇡ 0.6 M�. The overall completeness level of the
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Observing window smearing



• β Pic: position and µ imprecise in Gaia DR2, but PMa of 
Hipparcos ok (article Snellen & Brown 2018, Nat. Ast.)









Example: Ross 154 (M3.5V)

 Parallax:
 Hip2       1991.250  336.720 (2.030) mas (observed)
 GDR2       2015.500  336.152 (0.072) mas (observed) 

 Measured PM vector in ICRS frame:
 Hip2       1991.250    +637.020 ( 2.800)     -191.640 ( 1.700) mas/a 
 GDR2       2015.500    +639.344 ( 0.143)     -193.659 ( 0.121) mas/a 

 Computed (µalpha,µdelta) mean angular PM vector in ICRS frame:
 GDR2-Hip2  2003.375    +639.499 ( 0.068)     -193.878 ( 0.056) mas/a

 Computed diff. PM vector in ICRS frame:
 Hip2-G2H2  1991.250      -2.361 ( 2.801)       +2.225 ( 1.701) mas/a = (-0.8,+1.3) sig
 GDR2-G2H2  2015.500      -0.155 ( 0.159)       +0.220 ( 0.133) mas/a = (-1.0,+1.7) sig

 Transverse velocity residual norm H2-G2H2  : 45.75 (46.21) m/s
 Position angle of vel. residual   H2-G2H2  : 313.31 (31.69) deg
 Delta H2-G2H2 PM anomaly SNR               : 0.99

 Transverse velocity residual norm G2-G2H2  : 3.79 (2.92) m/s
 Position angle of vel. residual   G2-G2H2  : 324.81 (27.73) deg
 Delta G2-G2H2 PM anomaly SNR               : 1.30



Long periods





• Proxima: 

P. Kervella et al.: Companions of nearby stars from Gaia DR2

Fig. 12. Positions of the components of the binary star HD 173740+HD
173739 (M3V+M3.5V) at the Hipparcos and GDR2 epochs. Ths sym-
bols are the same as in Fig. 11.

Fig. 13. Positions of the components of the binary star HD 79210+HD
79211 (M3V+M3.5V) at the Hipparcos and GDR2 epochs. Ths sym-
bols are the same as in Fig. 11.

6.2. Proxima

Our nearest stellar neighbor Proxima Centauri (GJ551, V645
Cen, ↵ Cen C) is a very low mass red dwarf of spectral type
M5.5V. It hosts the nearest exoplanet, Proxima b (Anglada-
Escudé et al. 2016), a telluric mass planet with a very short or-
bital period (11.2 d) and orbital distance (0.05 au) that place it
inside the habitable zone of its parent star. The search for transit-
ing exoplanet signals have been unsuccessful up to now (Blank
et al. 2018). Proxima is an active star, with frequent flares, that
were detected over a broad range of wavelengths (MacGregor
et al. 2018; Howard et al. 2018).

6.2.1. Maximum possible orbital radius

We here consider the triple system ↵Cen AB + Proxima as
equivalent to a binary, due to the very large semi-major axis of
Proxima’s orbit (aProx = 8.7 kau; Kervella et al. 2017) compared
to that of the ↵Cen AB system (aAB = 23.5 au; Kervella et al.
2016b). The eccentricity of Proxima’s orbit is e = 0.50 and the
mass ratio of the system is q = mProx/(mA+mB+mProx) = 0.056.
Holman & Wiegert (1999) established the range of stable orbits
for planets orbiting in binary systems, and for the parameters of
Proxima’s orbit, they predict a maximum stable orbital radius for
planets orbiting Proxima of rmax = 0.20 aProx = 1.7 kau. In the
following, we adopt this limit to estimate the range of possible
companions orbiting Proxima.

6.2.2. Companion mass sensitivity

The fast PM of Proxima coupled with the high accuracy of the
position measurements by Hip2 and GDR2 results in an extraor-
dinary accuracy of the PM vector coordinates: its norm is es-
timated to µHG = 3859.110 ± 0.069 mas a�1 (at GDR2 epoch)
which corresponds to an SNR of 5.6⇥104. Subtracting the long-
term PM from the GDR2 vector, we measure a tangential veloc-
ity anomaly of �vtan,G2 = 2.7 ± 1.5 m s�1 at GDR2 epoch (Ta-
ble 2) significant at a 1.8� level. The accuracy on the tangential
velocity anomaly is limited by the precision of the GDR2 PM
vector, which will improve in the future data releases.

In addition to the Hip2 and GDR2 catalogs, we also tested
the PM vector obtained by Benedict et al. (1999) for the pres-
ence of a PMa. We find a very large signal at a level of SNR of
�FGS = 19, but the reliability of the PM vector coordinates of
Proxima is uncertain as the FGS measurement is based on dif-
ferential astrometry with background stars, whose PM vectors
are themselves unknown. We note that the parallax of Proxima
$FGS = 768.7 ± 0.3 mas determined by Benedict et al. (1999)
is in perfect agreement with the GDR2 value ($G2 = 768.53 ±
0.22 mas). The ground-based parallax of$L14 = 768.1±1.0 mas
measured by Lurie et al. (2014) is also perfectly consistent with
the GDR2. Mesa et al. (2017) established mass and radius lim-
its to companions of Proxima from adaptive optics imaging with
the SPHERE instrument, setting a maximum mass of a planet or-
biting beyond 2 au from the star to 4 MJ . Based on ground based
astrometric measurements, Lurie et al. (2014) set the maximum
mass of possible companions of Proxima to 2 MJ at 0.8 au and
1 MJ at 2.6 au. Closer to Proxima, Endl & Kürster (2008) set
very low mass limits using the radial velocity technique, of 4 M�
at r = 0.1 au and 15 M� = 0.05 MJ at r = 1 au. This limit was
further decreased with the detection of the mb sin i = 1.3 M�
Proxima b (Anglada-Escudé et al. 2016).

The possible (m2, r) combinations (with m2 the compan-
ion mass and r its orbital radius) corresponding to the detected
GDR2 tangential velocity anomaly �vtan,G2 are presented in
Fig. 14 in green color. The possible domain of (m2, r) com-
binations delineated by Endl & Kürster (2008) is represented
as the shaded pink area. Taking into account the radial veloc-
ity and Gaia astrometry limits, we exclude at a 1� level the
presence of a planet with a mass m2 > 0.2 MJ at r < 10 au
(Porb < 100 years). Wide companions between 10 and 50 au
(Porb = 100 � 1000 years) with masses m2 > 0.4 MJ are also
excluded. Considering the maximum permitted orbital radius of
rmax = 1.7 kau, we exclude the presence of any planet more mas-
sive than m2 = 2.5 MJ orbiting around Proxima. These stringent
constraints on the presence of planets around Proxima empha-
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Fig. 12. Positions of the components of the binary star HD 173740+HD
173739 (M3V+M3.5V) at the Hipparcos and GDR2 epochs. Ths sym-
bols are the same as in Fig. 11.

Fig. 13. Positions of the components of the binary star HD 79210+HD
79211 (M3V+M3.5V) at the Hipparcos and GDR2 epochs. Ths sym-
bols are the same as in Fig. 11.

6.2. Proxima

Our nearest stellar neighbor Proxima Centauri (GJ551, V645
Cen, ↵ Cen C) is a very low mass red dwarf of spectral type
M5.5V. It hosts the nearest exoplanet, Proxima b (Anglada-
Escudé et al. 2016), a telluric mass planet with a very short or-
bital period (11.2 d) and orbital distance (0.05 au) that place it
inside the habitable zone of its parent star. The search for transit-
ing exoplanet signals have been unsuccessful up to now (Blank
et al. 2018). Proxima is an active star, with frequent flares, that
were detected over a broad range of wavelengths (MacGregor
et al. 2018; Howard et al. 2018).

6.2.1. Maximum possible orbital radius

We here consider the triple system ↵Cen AB + Proxima as
equivalent to a binary, due to the very large semi-major axis of
Proxima’s orbit (aProx = 8.7 kau; Kervella et al. 2017) compared
to that of the ↵Cen AB system (aAB = 23.5 au; Kervella et al.
2016b). The eccentricity of Proxima’s orbit is e = 0.50 and the
mass ratio of the system is q = mProx/(mA+mB+mProx) = 0.056.
Holman & Wiegert (1999) established the range of stable orbits
for planets orbiting in binary systems, and for the parameters of
Proxima’s orbit, they predict a maximum stable orbital radius for
planets orbiting Proxima of rmax = 0.20 aProx = 1.7 kau. In the
following, we adopt this limit to estimate the range of possible
companions orbiting Proxima.

6.2.2. Companion mass sensitivity

The fast PM of Proxima coupled with the high accuracy of the
position measurements by Hip2 and GDR2 results in an extraor-
dinary accuracy of the PM vector coordinates: its norm is es-
timated to µHG = 3859.110 ± 0.069 mas a�1 (at GDR2 epoch)
which corresponds to an SNR of 5.6⇥104. Subtracting the long-
term PM from the GDR2 vector, we measure a tangential veloc-
ity anomaly of �vtan,G2 = 2.7 ± 1.5 m s�1 at GDR2 epoch (Ta-
ble 2) significant at a 1.8� level. The accuracy on the tangential
velocity anomaly is limited by the precision of the GDR2 PM
vector, which will improve in the future data releases.

In addition to the Hip2 and GDR2 catalogs, we also tested
the PM vector obtained by Benedict et al. (1999) for the pres-
ence of a PMa. We find a very large signal at a level of SNR of
�FGS = 19, but the reliability of the PM vector coordinates of
Proxima is uncertain as the FGS measurement is based on dif-
ferential astrometry with background stars, whose PM vectors
are themselves unknown. We note that the parallax of Proxima
$FGS = 768.7 ± 0.3 mas determined by Benedict et al. (1999)
is in perfect agreement with the GDR2 value ($G2 = 768.53 ±
0.22 mas). The ground-based parallax of$L14 = 768.1±1.0 mas
measured by Lurie et al. (2014) is also perfectly consistent with
the GDR2. Mesa et al. (2017) established mass and radius lim-
its to companions of Proxima from adaptive optics imaging with
the SPHERE instrument, setting a maximum mass of a planet or-
biting beyond 2 au from the star to 4 MJ . Based on ground based
astrometric measurements, Lurie et al. (2014) set the maximum
mass of possible companions of Proxima to 2 MJ at 0.8 au and
1 MJ at 2.6 au. Closer to Proxima, Endl & Kürster (2008) set
very low mass limits using the radial velocity technique, of 4 M�
at r = 0.1 au and 15 M� = 0.05 MJ at r = 1 au. This limit was
further decreased with the detection of the mb sin i = 1.3 M�
Proxima b (Anglada-Escudé et al. 2016).

The possible (m2, r) combinations (with m2 the compan-
ion mass and r its orbital radius) corresponding to the detected
GDR2 tangential velocity anomaly �vtan,G2 are presented in
Fig. 14 in green color. The possible domain of (m2, r) com-
binations delineated by Endl & Kürster (2008) is represented
as the shaded pink area. Taking into account the radial veloc-
ity and Gaia astrometry limits, we exclude at a 1� level the
presence of a planet with a mass m2 > 0.2 MJ at r < 10 au
(Porb < 100 years). Wide companions between 10 and 50 au
(Porb = 100 � 1000 years) with masses m2 > 0.4 MJ are also
excluded. Considering the maximum permitted orbital radius of
rmax = 1.7 kau, we exclude the presence of any planet more mas-
sive than m2 = 2.5 MJ orbiting around Proxima. These stringent
constraints on the presence of planets around Proxima empha-
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