IMPACT OF BINARITY
 ON THE 3 MAIN ASTROPHYSICAL OBJECTIVES OF CHARA/SPICA

Group Multiplicity :
Anthony Salsi, Darek Graczyk,
Frederic Morand, Gilles Duvert,
Orlagh Creevey, Pierre Kervella

SBRC

- Before 2024 : Remove binaries from sample used for construction of SBCR (for PLATO)
- Except for: O-type and early B-type stars : well known procedure that be able to treat binarity (not PLATO targets)

EXOPLANETS

-1) Check for binarity

- 2) If exoplanet in binary \rightarrow orbit follow-up (future)

ASTEROSEISMOLOGY

If star is an asteroseismic binary

- 1) Calibrating seismic relations
- CHARA/SPICA orbit + (parallax OR RV) $\rightarrow M_{A}, M_{B}$
- CHARA/SPICA two diameters + parallax $\rightarrow \mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$
- Maybe a few valid targets (before PLATO)
- Orbit follow-up with PLATO seismology
- 2) CHARA/SPICA observations can flag for multiplicity
(for binaries that have not already been detected)

GENERAL

- General
- Pierre's catalogue (GAIA + Hipparcos) \rightarrow Benchmark stars
- M/R separated if follow orbit
- \rightarrow selection of candidates
- Calibrators
- Multiplicity is a problem
- For $V<7$ and $\theta<0.1$ mas \rightarrow about 100 stars available for CHARA/SPICA : BIII or BIV stars that should probably not be multiple
- GAIA can help to remove some binaries from the calibrator catalogue
- CHARA/SPICA will also clean this sample \rightarrow all these stars have to be in target list

CONCLUSION

- In most cases, binarity is a plus
- Most identify cases are not specific to one of 3 scientific objectives
- Binarity : scientific case for CHARA/SPICA ?!

Hip-Gaia proper motion anomaly and binarity of Hipparcos stars

P. Kervella, F. Arenou, F. Mignard, F. Thévenin

Single star

Hipparcos
Gaia DR2

- Sensitivity in mass and orbital radius?

$$
\begin{aligned}
& v_{1}=\sqrt{\frac{G m_{2}^{2}}{\left(m_{1}+m_{2}\right) r}} \\
& \frac{m_{2}}{\sqrt{r}}=\sqrt{\frac{m_{1}}{G}} v_{1}=\sqrt{\frac{m_{1}}{G}}\left(\frac{\Delta \mu\left[\mathrm{mas} \mathrm{a}^{-1}\right]}{\varpi\left[\mathrm{mas} \mathrm{au}^{-1}\right]} \times 4740.470\right) \\
& \sigma(\mu)=242 \mu \mathrm{as} \mathrm{a}^{-1} \\
& \sigma\left(m_{2}^{\dagger}\right)=0.040 M_{J} \mathrm{au}^{-1 / 2} \mathrm{pc}^{-1}
\end{aligned}
$$

Observing window smearing

- β Pic: position and μ imprecise in Gaia DR2, but PMa of Hipparcos ok (article Snellen \& Brown 2018, Nat. Ast.)

Example: Ross 154 (M3.5V)

Parallax:

Hip2	1991.250	336.720	(2.030)	mas (observed)
GDR2	2015.500	336.152	(0.072)	mas (observed)

Measured $P M$ vector in ICRS frame:

| Hip2 | 1991.250 | $+637.020(2.800)$ | $-191.640(1.700)$ | $\mathrm{mas} / \mathrm{a}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| GDR2 | 2015.500 | $+639.344(0.143)$ | $-193.659(0.121)$ | $\mathrm{mas} / \mathrm{a}$ |

Computed (μ alpha, μ delta) mean angular $P M$ vector in ICRS frame:
GDR2-Hip2 2003.375 +639.499 (0.068) -193.878 (0.056) mas/a
Computed diff. PM vector in ICRS frame:

Hip2-G2H2	1991.250	-2.361	(2.801)	+2.225	(1.701)
GDR2-G2H2 mas $/ \mathrm{a}=(-0.8,+1.3)$	sig				
2015.500	-0.155	(0.159)	$+0.220(0.133) \mathrm{mas} / \mathrm{a}=(-1.0,+1.7)$	sig	

Transverse velocity residual norm H2-G2H2 Position angle of vel. residual H2-G2H2
$: 45.75(46.21) \mathrm{m} / \mathrm{s}$

Delta H2-G2H2 PM anomaly SNR
: 313.31 (31.69) deg
: 0.99

Transverse velocity residual norm G2-G2H2 : 3.79 (2.92) m/s
Position angle of vel. residual G2-G2H2 : 324.81 (27.73) deg
Delta G2-G2H2 PM anomaly SNR

Long periods

Ross 154

- Proxima: $\mu_{\mathrm{HG}}=3859.110 \pm 0.069$ mas a $^{-1}$

$$
\Delta v_{\mathrm{tan}, \mathrm{G} 2}=2.7 \pm 1.5 \mathrm{~m} \mathrm{~s}^{-1}
$$

Confirmation of bind with α Cen AB

Proxima

