Objectives

- COROT, SONG and TESS observable targets
- Core sample focused on F, G, K IV-V stars
- Extension to giants and earlier types
- Explore various metallicities

Precise and **accurate** T_{eff} and θ SBCR

Calibration of seismic scale relation

- Extension of the CHARA-SPICA sample to PLATO targets
- Follow-up detected binaries

Provide R and T_{eff} for preparation pipeline

Binary detection:

- FLAG (CHARA-SPICA and GAIA complementarity in separation)
- Radius of the component(s)

Binary : mass ratio radii of components

Methods

SESSION 1 &2 : Objectives and methods

Objectives

Determination of angular diameter throughout HR diagram

- use determinations of radius and T_{eff} in...

Scaling relations:
$$\Delta \nu \propto \sqrt{\langle \rho \rangle} \quad \nu_{\max} \propto g/c_{\rm S}$$

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^3 \left(\frac{\langle \Delta \nu \rangle}{\langle \Delta \nu_{\odot} \rangle}\right)^{-4} \left(\frac{T_{\rm eff}}{T_{\rm eff,\odot}}\right)^{3/2} \quad \frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\langle \Delta \nu \rangle}{\langle \Delta \nu_{\odot} \rangle}\right)^{-2} \left(\frac{T_{\rm eff}}{T_{\rm eff,\odot}}\right)^{1/2} \quad T_{\rm eff} = \left(\frac{4 F_{\rm bol}}{\sigma \theta^2}\right)^{1/4}$$

SESSION 1 &2 : Objectives and methods

Objectives

Determination of angular diameter throughout HR diagram

2021	2024	2027	
Start of the CHARA-SPICA survey	PLATO fields are known	First PLATO data	>
 seismic modelling requires mass, radius and T_{eff} provide θ as « model independent » observable derive R from θ and π derive T_{eff} from bolometric luminosity and θ improvement of SBCR calibration to be used on stars with no direct θ measurement 	 extend target sample with derive T_{eff} and θ for targets apply improved SBCR to fa insert newly determined p use Gaia, spectro, CHARA/ 	extend target sample with PLATO targets derive T_{eff} and θ for targets that are bright enough apply improved SBCR to fainter PLATO targets insert newly determined parameters into PLATO database use Gaia, spectro, CHARA/SPICA data to produce models	
	 identify new multiple stars measure radii of compone estimate mass ratios from 	identify new multiple stars (complementary to Gaia) → flag measure radii of components estimate mass ratios from orbital elements (need multiple visits)	
- use determinations of radius and T_{eff}	in		
Scaling relations : $\Delta u \propto \sqrt{<}$	$\overline{\langle \rho \rangle} = \nu_{\rm max} \propto q/c_{\rm s}$		

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^{3} \left(\frac{\langle \Delta \nu \rangle}{\langle \Delta \nu_{\odot} \rangle}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2} \qquad \frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\langle \Delta \nu \rangle}{\langle \Delta \nu_{\odot} \rangle}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2} \qquad T_{\text{eff}} = \left(\frac{4 F_{\text{bol}}}{\sigma \theta^{2}}\right)^{1/4}$$

SESSION 1 &2 : Objectives and methods

Objectives

Determination of angular diameter throughout HR diagram

2021	2024	2027
Start of the CHARA-SPICA survey	PLATO fields are known	First PLATO data
 seismic modelling requires mass, radius and T_{eff} provide θ as « model independent » observable derive R from θ and π derive T_{eff} from bolometric luminosity and θ improvement of SBCR calibration 	 extend target sample with PLATO targets derive T_{eff} and θ for targets that are bright enough apply improved SBCR to fainter PLATO targets insert newly determined parameters into PLATO database use Gaia, spectro, CHARA/SPICA data to produce models 	 focus on exoplanet hosts and detected binaries
	- identify new multiple stars (complementary to Gaia) \rightarrow flag	

- measure radii of components
- estimate mass ratios from orbital elements (need multiple visits)
- use determinations of radius and T_{eff} in...

Scaling relations:
$$\Delta \nu \propto \sqrt{\langle \rho \rangle} \quad \nu_{\max} \propto g/c_{s}$$

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^{3} \left(\frac{\langle \Delta \nu \rangle}{\langle \Delta \nu_{\odot} \rangle}\right)^{-4} \left(\frac{T_{eff}}{T_{eff,\odot}}\right)^{3/2} \quad \frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\langle \Delta \nu \rangle}{\langle \Delta \nu_{\odot} \rangle}\right)^{-2} \left(\frac{T_{eff}}{T_{eff,\odot}}\right)^{1/2} \quad T_{eff} = \left(\frac{4 F_{bol}}{\sigma \theta^{2}}\right)^{1/4}$$